

Elektronik 1, Foliensatz 4: MOS-Transistoren und Operationsverstärker

G. Kemnitz

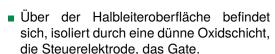
Institut für Informatik, TU-Clausthal (E1F4.pdf) 27. November 2024

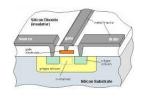
TU Clausthal

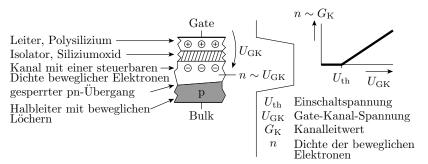
Inhalt Foliensatz 4

MOS-Transistoren

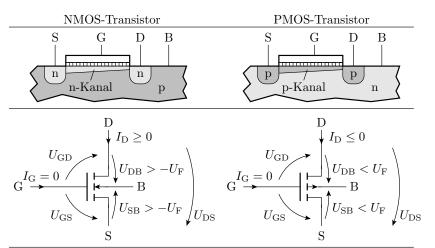
- 1.1 Verstärker
- 1.2 Schaltbetrieb
- 1.3 CMOS-Gatter
- 1.4 Speicherzellen
- 1.5 Aufgaben


Operationsverstärker


- 2.1 Verstärker
- 2.2 Rechenelemente
- 2.3 Komparator
- 2.4 Digital-Analog-Umsetzer
- 2.5 Analog-Digital-Umsetzer

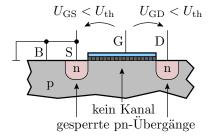


Funktionsprinzip



Die Gate-Kanal-Spannung steuert die Dichte der beweglichen Ladungsträger (Elektronen oder Löcher) und damit den Leitwert im Kanal.

Aufbau und Anschlüsse


Bezeichnung der Anschlüsse, Spannungen etc.

- Gate (Steueranschluss)
- Source (Quelle bewegl. Lad.)
- Drain (Abfluss bewegl. Lad.)
- В Bulk / Substrat
- n-leitfähiges Gebiet (bewegliche Elektronen)
- p-leitfähiges Gebiet (bewegliche Löcher)

- Gate-Source-Spannung U_{GS}
- Gate-Drain-Spannung $U_{\rm GD}$
- Drain-Source-Spannung $U_{\rm DS}$
- Source-Bulk-Spannung $U_{\rm SB}$ Drain-Bulk-Spannung $U_{\rm DB}$
- Flussspannung des $U_{\rm F}$
 - pn-Übergangs
- $I_{\rm D}$ Drainstrom
- $I_{\rm G}$ Gatestrom (praktisch null)

Arbeitsbereiche: Sperrbereich

Der Kanal ist von Anfang bis Ende ausgeschaltet:

NMOS: $U_{GS} < U_{th}$ und $U_{GD} < U_{th}$ PMOS: $U_{GS} > U_{th}$ und $U_{GD} > U_{th}$

 $(U_{\rm th}$ – Einschaltspannung). Der Drainstrom ist Null.

aktiver Bereich

NMOS: $U_{\rm GS} > U_{\rm th}$ und

 $U_{\rm GD} > U_{\rm th}$

PMOS: $U_{GS} < U_{th}$ und

 $U_{\rm GD} < U_{\rm th}$

 Wenn das Potenzial entlang des Kanals konstant ist $(U_{DS} \rightarrow 0)$:

$$U_{\rm GS} > U_{\rm th}$$
 $U_{\rm GD} > U_{\rm th}$

leitender Kanal vom Source bis zum Drain

$$G_{\text{Kanal}} = \frac{I_{\text{D}}}{U_{\text{DS}}} = K \cdot (U_{\text{GS}} - U_{\text{th}})$$

 Sonst, wenn im Kanal Strom fließt (für NMOS-Transistoren $U_{\rm DS}>0$ und für PMOS-Transistoren $U_{\rm DS}<0$:

$$I_{\rm D} = K \cdot \left((U_{\rm GS} - U_{\rm th}) \cdot U_{\rm DS} - \frac{U_{\rm DS}^2}{2} \right)$$

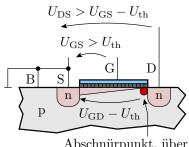
 $(K - \text{Steilheit}, U_{\text{th}} - \text{Einschaltspannung, beide für selbstsperrende})$ NMOS-Transistoren positiv und für selbstsperrende PMOS-Transistoren negativ).

Abschnürbereich

NMOS: $U_{GS} > U_{th}$ und

 $U_{\rm GD} < U_{\rm th}$

PMOS: $U_{GS} < U_{th}$ und

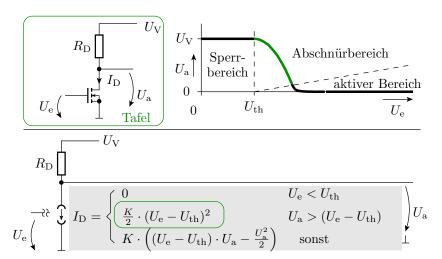

 $U_{\rm CD} > U_{\rm th}$

Für $U_{\rm DS} > U_{\rm GS} - U_{\rm th}$ nehmen Ladungsdichte, Feldstärke und Strom im leitfähigen Teil des

Kanal gegenüber $U_{\rm DS} = U_{\rm GS} - U_{\rm th}$ nicht weiter zu. Die hinzukommende Spannung fällt über dem Abschnürpunkt ab. Verhalten einer gesteuerten Stromguelle:

$$I_{\rm D} = K \cdot \frac{\left(U_{\rm GS} - U_{\rm th}\right)^2}{2}$$

 $(K - Steilheit, U_{th} - Einschaltspannung).$



Abschnürpunkt, über dem der Rest von U_{DS} abfällt

Verstärker

Einfacher Verstärker

Ubertragungsfunktion und Verstärkung

Verstärker nutzen hauptsächlich den Abschnürbereich. Voraussetzungen für den Abschnürbereich:

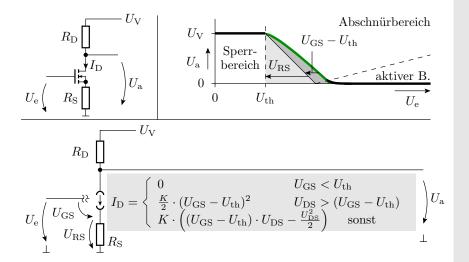
Eingangsspannung:

$$U_{\rm e} > U_{\rm th}$$

Ausgangsspannung:

$$U_{\rm a} > U_{\rm e} - U_{\rm th}$$

Übertragungsfunktion:


$$U_{\rm a} = U_{\rm V} - \frac{K \cdot R_{\rm DS}}{2} \cdot (U_{\rm e} - U_{\rm th})^2$$

Verstärkung:

$$v_{\mathrm{U}} = \frac{\mathrm{d}U_{\mathrm{a}}}{\mathrm{d}U_{\mathrm{e}}} = -K \cdot R_{\mathrm{DS}} \cdot (U_{\mathrm{e}} - U_{\mathrm{th}})$$

Linearisierung

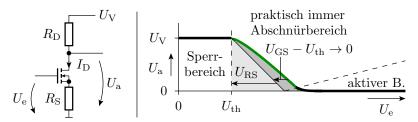
Betrieb im Abschnürbereich

$$U_{\rm e} = U_{\rm GS} + U_{\rm RS}$$

$$U_{\rm GS} = \sqrt{\frac{2 \cdot I_{\rm D}}{K}} + U_{\rm th} = \sqrt{\frac{2 \cdot (U_{\rm V} - U_{\rm a})}{K \cdot R_{\rm D}}} + U_{\rm th}$$

$$U_{\rm e} = \sqrt{\frac{2 \cdot (U_{\rm V} - U_{\rm a})}{K \cdot R_{\rm D}}} + U_{\rm th} + \frac{R_{\rm S}}{R_{\rm D}} \cdot (U_{\rm V} - U_{\rm a})$$

Kehrwert der Verstärkung:


$$\frac{\mathrm{d}U_{\mathrm{e}}}{\mathrm{d}U_{\mathrm{a}}} = \frac{1}{v_{\mathrm{u}}} = -\frac{R_{\mathrm{S}}}{R_{\mathrm{D}}} - \frac{1}{R_{\mathrm{D}}} \cdot \sqrt{\frac{R_{\mathrm{D}}}{2 \cdot K \cdot (U_{\mathrm{V}} - U_{\mathrm{a}})}}$$

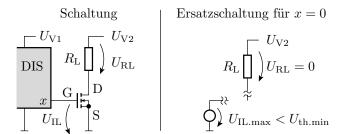
für

$$R_{\rm S} \gg \sqrt{\frac{R_{\rm D}}{2 \cdot K \cdot (U_{\rm V} - U_{\rm a})}} \ \, \Rightarrow \ \, v_{\rm u} \approx -\frac{R_{\rm D}}{R_{\rm S}}$$

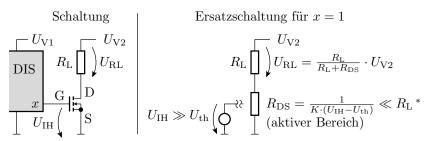
Linearisierung graphisch

Für $U_{\rm GS} \ll U_{\rm RS}$ gilt:

$$\begin{array}{lcl} U_{\rm e} & \approx & U_{\rm RS} + U_{\rm th} \\ \\ U_{\rm a} & = & U_{\rm V} - \frac{R_{\rm D}}{R_{\rm S}} \cdot U_{\rm RS} \approx U_{\rm V} - \frac{R_{\rm D}}{R_{\rm S}} \cdot (U_{\rm e} - U_{\rm th}) \\ \\ v_{\rm u} & = & \frac{{\rm d}U_{\rm a}}{{\rm d}U_{\rm e}} \approx - \frac{R_{\rm D}}{R_{\rm S}} \end{array}$$


Schaltbetrieb

Low-Side-Schalter


- Schalten des »Minusanschlusses«
- Source ist der Bezugspunkt (Masse)

Fall 1: Transistor sperrt (x = 0; $U_{GS} < U_{th}$)

(DIS – digitaler integrierter Schaltkreis, z.B. ein Mikroprozessor).

Fall 2: Transistor eingeschaltet ($x = 1; U_{GS} \gg U_{th}$)

 * Gültigkeitsvoraussetzung für das Berechnungsmodell

$$I_{\rm D} = K \cdot \left((U_{\rm IH} - U_{\rm th}) \cdot U_{\rm DS} - \frac{U_{\rm DS}^2}{2} \right) \approx K \cdot (U_{\rm IH} - U_{\rm th}) \cdot U_{\rm DS}$$

Leistungsumsatz

$$I_{\rm D} = \frac{U_{\rm V2}}{R_{\rm L} + R_{\rm DS}}$$

Umgesetzte Leistungen:

$$P_{\rm RL} = \frac{R_{\rm L} \cdot U_{\rm V2}^2}{(R_{\rm L} + R_{\rm DS})^2} \quad P_{\rm Tr} = \frac{R_{\rm DS} \cdot U_{\rm V2}^2}{(R_{\rm L} + R_{\rm DS})^2}$$

 $P_{\rm RL}$: Leistungsumsatz im Lastwiderstand

 P_{Tr} : Leistungsumsatz im Transistor

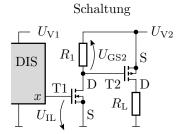
$$P_{\rm Tr} = \frac{R_{\rm DS}}{R_{\rm I}} \cdot P_{\rm RL}$$

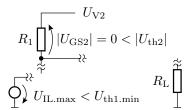
- Wegen $R_{\rm DS} \ll R_{\rm L}$ sehr günstiges Verhältnis.
- ⇒ Steuerung von Lasten bis zu mehreren hundert Watt.

Beispiele für Low-Side-Schalter

Тур	$R_{ m DS}(U_{ m IH})$	$U_{ m th}$	$I_{ m Dmax}$	U_{DSmax}	P_{\max}
IRFD014	$200\mathrm{m}\Omega$ (10 V)	$2 \dots 4 V$	$1,2\mathrm{A}$	60 V	$1,3\mathrm{W}$
RFD14N05L	$100\mathrm{m}\Omega$ (5 V)	$1 \dots 2 V$	14 A	50 V	48 W
BUK100- 50GL ⁽¹⁾	$125\mathrm{m}\Omega$ (5 V)	12 V	13,5 A	50 V	40 W

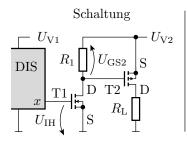
(1) mit integrierten Schutzfunktionen gegen zu hohe Bauteiltemperaturen und Ströme; $R_{\rm DS}$ – Drain-Source-Widerstand; $U_{\rm GS}$ – Gate-Source-Spannung; $U_{\rm th}$ – Einschaltspannung; $I_{\rm Dmax}$ – max. zulässiger Drain-Strom; $U_{\rm DSmax}$ – max. zulässige Drain-Source-Spannung; $P_{\rm max}$ – max. zulässige Verlustleistung. Die Steilheit ergibt sich aus $R_{\rm DS}$ und der zugehörigen Gate-Source-Spannung:

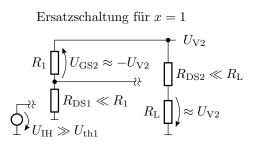

$$K = \frac{1}{R_{\rm DS} \cdot (U_{\rm IH} - U_{\rm th})}$$


High-Side-Schalter

Ein High-Side-Schalter schaltet die Verbindung zwischen dem Ausgabeelement und dem positiven Versorgungsanschluss:

- PMOS-Transistor mit dem Source (Bezugspunkt) an $+U_V$.
- Digitale Schaltkreise haben den negativen Versorgungsanschluss als Bezugspunkt.
- Zweiter Transistor zur Änderung des Bezugspotentials.



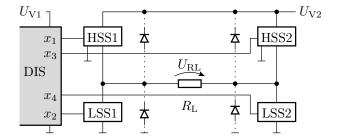

Ersatzschaltung für x = 0

Ersatzschaltung für »Last ein«

Beispiele für High-Side-Schalter

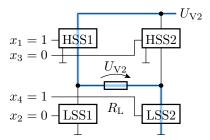
Тур	$R_{ m DS}(U_{ m IH})$	$U_{ m th}$	$I_{ m Dmax}$	$U_{ m DSmax}$	P_{\max}
IRFD9024	$260\mathrm{m}\Omega$	$-2\ldots$	-1,1 A	$-60\mathrm{V}$	$1,3\mathrm{W}$
	$(-10\mathrm{V})$	4 V			
IPS5451 ^(1,2)	$20 \dots 30 \mathrm{m}\Omega$		$-14\mathrm{A}$	$-50\mathrm{V}$	(3)
IRFD9640	$500\mathrm{m}\Omega$	$-2\ldots-$	-11 A	$-200{ m V}$	50 W
	(-10 V)	4 V			

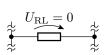
$$K = (R_{\rm DS} \cdot |U_{\rm IH} - U_{\rm th}|)^{-1}$$

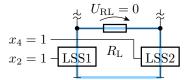

- Mit integrierten Schutzfunktionen gegen zu hohe Bauteiltemperaturen und Ströme.
- Mit der Schaltung zur Transformation digitaler Steuerspannungen mit negativem Bezugspunkt in die Steuerspannungen für den Schalttransistor.
- (3) Die Leistung ergibt sich aus der Abschalttemperatur und hängt von der Kühlung ab.

PMOS-Transistoren haben bei gleicher Geometrie etwa den doppelten Einschaltwiderstand. Grund: geringere Beweglichkeit¹ der Löcher im p-Kanal im Vergleich zu den Elektronen im n-Kanal.

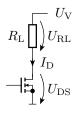
¹Beweglichkeit ist das Verhältnis aus Geschwindigkeit und Feldstärke der beweglichen Ladungsträger.

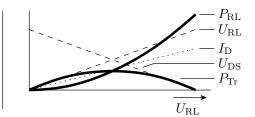

H-Brücke



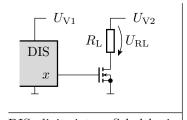


Betriebsarten

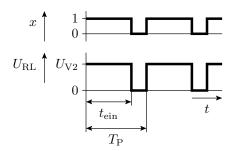




Stufenlose Leistungssteuerung konventionell


$$P_{\mathrm{RL}} = \frac{(U_{\mathrm{RL}})^2}{R_{\mathrm{r}}}$$

$$P_{\text{Tr}} = \frac{(U_{\text{V}} - U_{\text{RL}}) \cdot U_{\text{RL}}}{R_{\text{r}}} \qquad P_{\text{Tr.max}} = \frac{U_{\text{V}}^2}{4 \cdot R_{\text{r}}}$$


$$P_{\text{Tr.max}} = \frac{U_{\text{V}}^2}{4 \cdot R_{\text{L}}}$$

Pulsweitenmodulation

DIS digit. integ. Schaltkreis

Ausgabeleistung proportional zur relativen Pulsweite:

$$\eta_{\rm T} = \frac{t_{\rm ein}}{T_{\rm P}}$$

Im Mittel im Transistor umgesetzte Leistung:

$$P_{\mathrm{Tr}} = \frac{R_{\mathrm{DS}}}{R_{\mathrm{L}}} \cdot P_{\mathrm{RL}}$$

Wiederholung 25.11.2021

Ausschaltbereich: $I_D = 0$

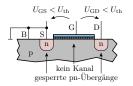
NMOS: $U_{GS} < U_{th}$ und $U_{GD} < U_{th}$ PMOS: $U_{GS} > U_{th}$ und $U_{GD} > U_{th}$

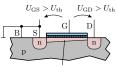
Aktiver Bereich:

$$I_{\rm D} = K \cdot \left((U_{\rm GS} - U_{\rm th}) \cdot U_{\rm DS} - \frac{U_{\rm DS}^2}{2} \right)$$

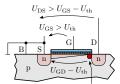
NMOS: $U_{GS} > U_{th}$ und $U_{GD} > U_{th}$

PMOS: $U_{CS} < U_{th}$ und $U_{CD} < U_{th}$

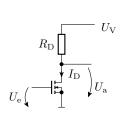

Abschnürbereich:

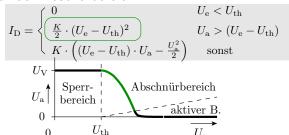

$$I_{\rm D} = \frac{K}{2} \cdot \left(U_{\rm GS} - U_{\rm th} \right)^2$$

NMOS: $U_{GS} > U_{th}$ und $U_{GD} < U_{th}$


PMOS: $U_{GS} < U_{th}$ und $U_{GD} > U_{th}$

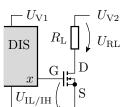
 $(K - Steilheit, U_{th} - Einschaltspannung).$

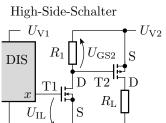

leitender Kanal vom Source bis zum Drain

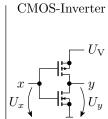


Abschnürpunkt, über dem der Rest von U_{DS} abfällt

2. Schaltbetrieb

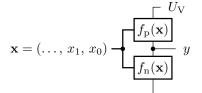

Verstärker nutzen den Abschürbereich:





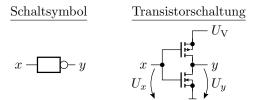
Schaltbetrieb

Low-Side-Schalter



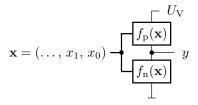
CMOS-Gatter

Allgemeiner Aufbau



$f_{\rm n}({\bf x})$	$f_{\mathrm{p}}(\mathbf{x})$	y = f(x)
0	0	hochohmig/inaktiv
0	1	1
1	0	0
1	1	verboten

$$f_{\mathrm{n}}\left(\mathbf{x}\right) = \left\{ egin{array}{ll} 0 & \mathsf{Zweipol\ gesperrt} \ 1 & \mathsf{Zweipol\ leitend} \end{array}
ight. \ f_{\mathrm{p}}\left(\mathbf{x}\right) = \left\{ egin{array}{ll} 0 & \mathsf{Zweipol\ gesperrt} \ 1 & \mathsf{Zweipol\ leitend} \end{array}
ight.$$


CMOS-Inverter

- x = 0: NMOS-Transistor aus, PMOS-Transistor ein, y = 1
- x = 1: NMOS-Transistor ein, PMOS-Transistor aus, y = 0

FCMOS-Gatter

Komplementäre Funktionen des NMOS- und des PMOS-Zweipols

$$f_{\rm p}(\mathbf{x}) = f(\mathbf{x})$$

 $f_{\rm n}(\mathbf{x}) = \overline{f(\mathbf{x})}$

- Innerhalb der Zweipole:
 - Reihenschaltung von Transistoren ⇒ UND (Operator ∧)
 - Parallelschaltung von Transistoren ⇒ ODER (Operator ∨)
 - PMOS-Transistoren invertieren (schalten bei $x_i = 0$ ein)

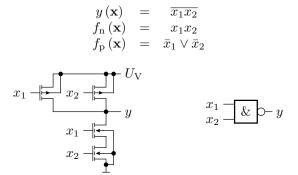
Umformregeln für logische Ausdrücke

Umformungsregel	Bezeichnung	
$\bar{\bar{x}} = x$	doppelte Negation	
$x \lor 1 = 1$ $x \lor \bar{x} = 1$	Eliminationsgesetze	
$x \wedge 0 = 0 x \wedge \bar{x} = 0$		
$x_1 \lor (x_1 \land x_2) = x_1$	Absorbtionsgesetze	
$x_1 \wedge (x_1 \vee x_2) = x_1$		
$\bar{x}_1 \vee \bar{x}_2 = \overline{x_1 \wedge x_2}$	de morgansche Regeln	
$\bar{x}_1 \wedge \bar{x}_2 = \overline{x_1 \vee x_2}$		
$x_1 \wedge x_2 = x_2 \wedge x_1$	Kommutativgesetz	
$x_1 \lor x_2 = x_2 \lor x_1$		
$(x_1 \vee x_2) \vee x_3 = x_1 \vee (x_2 \vee x_3)$	Assoziativgesetz	
$(x_1 \wedge x_2) \wedge x_3 = x_1 \wedge (x_2 \wedge x_3)$		
$x_1 \wedge (x_2 \vee x_3) = (x_1 \wedge x_2) \vee (x_1 \wedge x_3)$	Distributivgesetz	

Beweis durch Aufstellen der Wertetabellen

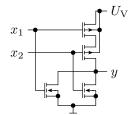
Beispiel De Morgan'sche Regeln:

x_1	x_2	$\bar{x}_1 \vee \bar{x}_2$	$\overline{x_1 \wedge x_2}$	$\bar{x}_1 \wedge \bar{x}_2$	$\overline{x_1 \vee x_2}$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	1	1	0	0
1	1	0	0	0	0

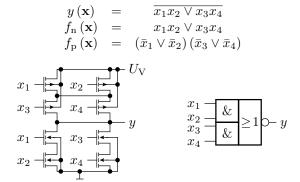

- Ohne Klammern hat UND-Vorrang vor ODER.
- Der UND-Operator » A « kann in logischen Ausdrücken weggelassen werden und hat Vorrang vor ODER » V«:

$$(x_1 \wedge x_2) \vee (x_1 \wedge x_3) = x_1 x_2 \vee x_1 x_3$$

■ Vor Anwendung »De Morgan« (Tausch UND ⇔ ODER) Klammern einfügen.


NAND-Gatter

NOR-Gatter

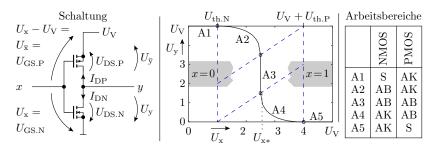

$$\begin{array}{rcl} y\left(\mathbf{x}\right) & = & \overline{x_1 \vee x_2} \\ f_{\mathrm{n}}\left(\mathbf{x}\right) & = & x_1 \vee x_2 \\ f_{\mathrm{p}}\left(\mathbf{x}\right) & = & \overline{x}_1 \overline{x}_2 \end{array}$$

$$\begin{array}{c} x_1 - \\ x_2 - \\ \hline \ge 1 - y \end{array}$$

Komplexgatter

Logische Ausdrücke vorher vereinfachen

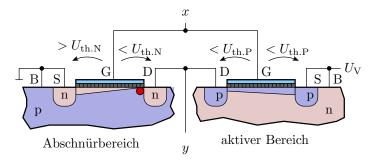
Komplexe logische Zielfunktionen lassen sich oft vor der Umsetzung in ein Gatter durch Anwendung der


- Eliminationsgesetze,
- Absorbtionsgesetze und

anderer Umformungsregeln vereinfachen. Beispiel:

$$y = \overline{(x_1 x_2 x_3) \vee x_1 \vee x_2} = \overline{x_1 \vee x_2}$$

Ubertragungsfunktion eines CMOS-Inverters

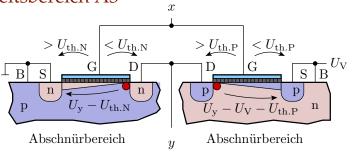


(S – Sperrbereich; AB – Abschnürbereich; AK – aktiver Bereich)

- In einem korrekten Entwurf ist nach jedem Schaltvorgang ein Transistorzweig gesperrt (Arbeitsbereich A1 oder A5).
- Die Arbeitsbereiche A2 bis A4 sollten nur während der Schaltvorgänge auftreten.

Arbeitsbereich A2

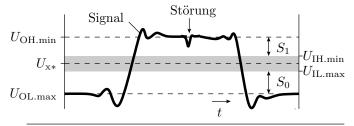
Bedingung:


$$U_{\rm th.N} < U_{\rm x} < U_{\rm x*}$$

• $U_x \rightarrow U_y$: Lösungen der folgenden quadratischen Gleichung:

$$0 = K_{_{\rm N}} \cdot \frac{\left(U_x - U_{\rm th.N}\right)^2}{2} + K_{_{\rm P}} \cdot \left(\left(U_{\bar{x}} - U_{\rm th.P}\right) \cdot U_{\bar{\rm y}} - \frac{U_{\bar{\rm y}}^2}{2}\right)$$

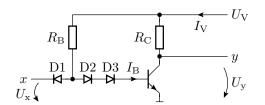
Arbeitsbereich A3

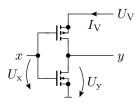

- Für eine bestimmte Eingangsspannung $U_x = U_{x*}$ arbeiten beide Transistoren als gesteuerte Stromquellen, die denselben Strom liefern.
- Gleichung zur Berechnung dieser Spannung:

$$0 = K_{_{\rm N}} \cdot \frac{\left(U_{\rm x*} - U_{\rm th.N}\right)^2}{2} + K_{_{\rm P}} \cdot \frac{\left(U_{\rm V} - U_{\rm x*} + U_{\rm th.P}\right)^2}{2}$$

Laut Modell senkrechter Kennlinienverlauf.

Störabstand


Umschaltspannung zwischen null und eins U_{x*} Toleranzbereich der Umschaltspannung Eingangsspannung für eine 0 bzw. 1 $U_{\rm IL},\,U_{\rm IH}$ $U_{\rm OL}$, $U_{\rm OH}$ Ausgangsspannung für eine 0 bzw. 1


Störabstand: Maximale, der Eingangsspannung überlagerte Störspannung, bei der garantiert keine Fehlfunktion auftritt:

$$S = \min(S_0, S_1) = \min(U_{\text{IL, max}} - U_{\text{OL, min}}, U_{\text{OH, min}} - U_{\text{IH, max}})$$

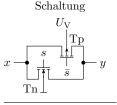
Vergleich CMOS-Inverter und DT-Inverter

	DI-Inverter CMOS-Inverte	
$U_{\rm OL.max}$	$U_{\rm CEX} \approx 0.2 { m V}$	0
$U_{ m OH.min}$	$U_{ m V}$	$U_{ m V}$
U_{x*}	$U_{\rm BEF} + U_{\rm F} \approx 1.4 { m V}^*$	ideal $U_{ m V}/2pprox2.5{ m V}^*$
S	$> 1 V^*$	$> 2 V^*$
$I_{\rm V}$ für $x=0$	Strom durch $R_{ m B}$	0
$I_{\rm V}$ für $x=1$	Strom durch $R_{\rm C}$	0

 $(I_{\rm V}$ – Versorgungsstrom, $I_{\rm V}\cdot U_{\rm V}$ – Verlustleistung, * für $U_{\rm V}=5\,{\rm V}$).

Warum werden heute fast nur noch CMOS-Gatter eingesetzt?

- Einfacher Entwurf.
- Geringe Verlustleistung als Voraussetzung für die Integration von Millionen von Gattern auf einem Chip.
- Großer Störabstand.

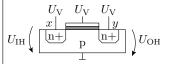

Frühere Gatterschaltungen, insbesondere solche mit Bipolartransistoren, sind aus fast allen Anwendungen verdrängt, auch die behandelten DT-Gatter und ihre Weiterentwicklungen, die TTL-Gatter (TTL - Transistor Transistor Logic), STTL-Gatter (Schottky-TTL-Gatter) etc.

Transfergatter

Nachbildung eines Schalters, der sowohl null als auch eine eins an seinen Ausgang weiterleiten kann:

- Parallelschaltung eines NMOS- und eines PMOS-Transistors.
- Benötigt das direkte und das negierte Steuersignal.

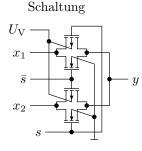
Schaltermodell

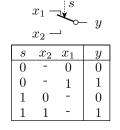

$$x - y$$

Wertetabelle

s	\boldsymbol{x}	Tn Tp	y
0	0	S S	Z
0	1	S S	Z 0
1	0	A S*	0
1	1	S* A	1

- aktiver Bereich
- Sperrbereich
- hochohmig
- Sperrbereich, wenn Paralleltransistor ein

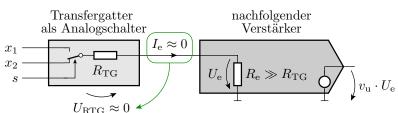

Sperrbereich, wenn Paralleltransistor ein


Kanal könnte bewegliche Elektronen aufnehmen, ist aber beidseitig abgeschnürt

Umschalter aus zwei Transfergattern

Schaltermodell

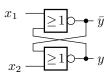
Schaltzeichen



(- - logischer Wert ohne Einfluss, don't care)

Transfergatter als Analogschalter

- Der Drain-Source-Widerstand ist von der Ein- und Ausgangsspannung abhängig.
- Zur Vermeidung nichtlinearer Spannungsabfälle benötigt die Schaltung hinter einem Transfergatter einen hohen Eingangswiderstand.



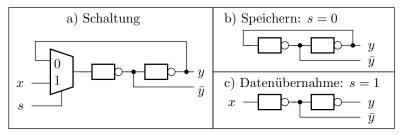
Speicherzellen

RS-Flipflop

Betriebsart	x_1	x_2	y	\bar{y}
Setzen	1	0	1	0
Rücksetzen	0	1	0	1
Speichern	0	0	y^*	\bar{y}^*
Vermeiden	1	1	0	0

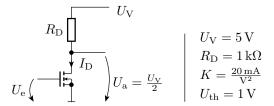
 y^* , \bar{y}^* – Beibehaltung des bisherigen Wertes

- $x_1 = x_2 = 1$ ist zu vermeiden, weil bei zeitgleicher Änderung von x_1 und x_2 von eins nach null der Folgezustand unbestimmt ist.
- Ungebräuchlich, weil störanfällig².


²Störpulse können den gespeicherten Wert umkippen.

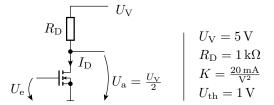
D-Flipflop

störsicherere Alternative


Im Speichermodus werden Störpulse auf der Datenleitung toleriert.

Aufgaben

Aufgabe 4.1: MOS-Verstärker



Gesucht sind:

- Übertragungsfunktion mit dem Transistor im Abschnürbereich?
- Ein- und Ausgangsspannungsbereich, in dem der Transistor im Abschnürbereich arbeitet?
- 3 Eingangsspannung $U_{\rm e}$ für $U_{\rm a}=\frac{U_{\rm V}}{2}$?
- 4 Spannungsverstärkung $v_{\rm u}=rac{{
 m d}U_{
 m a}}{{
 m d}U_{
 m a}}$ bei dieser Eingangsspannung?

Lösung zu Aufgabe 4.1

Übertragungsfunktion mit dem Transistor im Abschnürbereich:

$$U_{\rm a} = U_{\rm V} - \frac{R_{\rm D} \cdot K}{2} \cdot (U_{\rm e} - U_{\rm th})^2 = 5 \, \text{V} - \frac{(U_{\rm e} - 1 \, \text{V})^2}{0.1 \, \text{V}}$$

Ein- und Ausgangsspannungsbereich, in dem der Transistor im Abschnürbereich arbeitet:

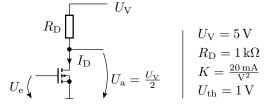
$$U_{\rm th} < U_{\rm e.\,max} = U_{\rm a} + U_{\rm th} = U_{\rm V} + U_{\rm th} - \frac{R_{\rm D} \cdot K}{2} \cdot (U_{\rm e.max} - U_{\rm th})^2$$

$$U_{\rm e.\,max} = 6\,\mathrm{V} - \frac{(U_{\rm e.max} - 1\,\mathrm{V})^2}{0.1\,\mathrm{V}}$$

$$\begin{split} U_{\rm e.\,max} &= U_{\rm a} + U_{\rm th} = U_{\rm V} + U_{\rm th} - \frac{R_{\rm D} \cdot K}{2} \cdot (U_{\rm e.max} - U_{\rm th})^2 \\ U_{\rm e.\,max} &= 6 \, {\rm V} - \frac{(U_{\rm e.max} - 1 \, {\rm V})^2}{0.1 \, {\rm V}} \\ 0.1 \, {\rm V} \cdot U_{\rm e.\,max} &= 0.6 \, {\rm V}^2 - \left(U_{\rm e.max}^2 - 2 \, {\rm V} \cdot U_{\rm e.max} + 1 \, {\rm V}^2\right) \\ 0 &= U_{\rm e.max}^2 - 1.9 \, {\rm V} \cdot U_{\rm e.max} + 0.4 \, {\rm V}^2 \\ U_{\rm e.max} &= \frac{1.9 \, {\rm V}}{2} \pm \sqrt{\left(\frac{1.9 \, {\rm V}}{2}\right)^2 - 0.4 \, {\rm V}^2} \end{split}$$

Mögliche Lösungen:

$$U_{\text{e.max}} \in \{0.241 \,\text{V}, \, 1.659 \,\text{V}\}$$


Größer als $U_{\rm th}=1\,{
m V}$ ist davon nur:

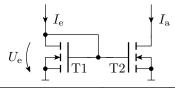
$$U_{\rm e.max} = 1,659 \, {\rm V}$$

Probe:

$$U_{\rm a}(U_{\rm e.max}) = U_{\rm V} - \frac{R_{\rm D} \cdot K}{2} \cdot (U_{\rm e} - U_{\rm th})^2 = 5 \, \text{V} - \frac{(U_{\rm e} - 1 \, \text{V})^2}{0.1 \, \text{V}}$$
$$= 0.659 \, \text{V} = U_{\rm e} - U_{\rm th} /$$

3 Eingangsspannung $U_{\rm e}$ für $U_{\rm a}=\frac{U_{\rm V}}{2}=U_{\rm V}-\frac{R_{\rm D}\cdot K}{2}\cdot (U_{\rm e}-U_{\rm th})^2$: $U_{\rm e}=\sqrt{\frac{U_{\rm v}}{R_{\rm D}\cdot K}}+U_{\rm th}=1.5\,{\rm V}$

 $oldsymbol{4}$ Spannungsverstärkung $v_{
m u}=rac{{
m d} U_{
m a}}{{
m d} U_{
m e}}$ für diese Eingangsspannung:


$$U_{\rm a} = U_{\rm V} - \frac{R_{\rm D} \cdot K}{2} \cdot (U_{\rm e} - U_{\rm th})^2$$

$$v_{\rm u} = \frac{\mathrm{d}U_{\rm a}}{\mathrm{d}U_{\rm e}} = -R_{\rm D} \cdot K \cdot (U_{\rm e} - U_{\rm th})$$

$$= -\frac{20}{\mathrm{V}} \cdot 0.5 \,\mathrm{V} = -10$$

Aufgabe 4.2: Stromspiegel

	T1	T2
Einschaltspannung $(U_{\rm th})$:	1 V	1 V
Steilheit K :	$5\mathrm{mA/V^2}$	$10\mathrm{mA/V^2}$

Wie bildet sich in der Schaltung mit T1 und T2 im Abschnürbereich

- \blacksquare der Eingangsstrom $I_{\rm e}$ auf die Eingangsspannung $U_{\rm e}$,
- f Z die Eingangsspannung $U_{
 m e}$ auf den Ausgangsstrom $I_{
 m a}$ und
- \blacksquare der Eingangsstrom $I_{\rm e}$ auf den Ausgangsstrom $I_{\rm a}$ ab?
- Bedingungen, dass T1 und T2 im Abschnürbereich arbeiten.

Lösung zu Aufgabe 4.2

	T1	T2
$U_{ m th}$	1 V	1 V
K	$5\mathrm{mA/V^2}$	$10\mathrm{mA/V^2}$

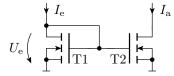


Abbildung des Eingangsstroms auf die Eingangsspannung:

$$I_{\rm e} = \frac{K_1}{2} \cdot (U_{\rm e} - U_{\rm th})^2$$

$$U_{\rm e} = U_{\rm th} + \sqrt{\frac{2 \cdot I_{\rm e}}{2}}$$

$$U_{\mathrm{e}} = U_{\mathrm{th}} + \sqrt{\frac{2 \cdot I_{\mathrm{e}}}{K_{1}}}$$

Abbildung der Eingangsspannung auf den Ausgangsstrom:

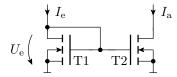

$$I_{\rm a} = \frac{K_2}{2} \cdot (U_{\rm e} - U_{\rm th})^2$$

Abbildung des Eingangsstroms auf den Ausgangsstrom:

$$I_{\mathrm{a}} = \frac{K_2}{K_1} \cdot I_{\mathrm{e}} = 2 \cdot I_{\mathrm{e}}$$

	T1	T2
$U_{ m th}$	1 V	$1\mathrm{V}$
K	$5\mathrm{mA/V^2}$	$10\mathrm{mA/V^2}$

4 Wegen $U_{GD1} = 0$ und $U_{th} = 1 \text{ V}$ arbeitet T1 für $I_e > 0$ immer im Abschnürbereich. Für T2 muss zusätzlich gelten:

$$U_{\rm DS2} > U_{\rm e} - U_{\rm th} = \sqrt{\frac{I_{\rm e}}{K_1}}$$

Aufgabe 4.3: Stufenlose Leistungssteuerung durch Pulsweitenmodulation

- I Wie groß ist der Einschaltwiderstand $R_{\rm DS} = \frac{\mathrm{d}U_{\rm DS}}{\mathrm{d}I_{\rm B}}$ des eingeschalteten MOS-Transistors?
- **2** Welche relative Pulsweite η ist erforderlich, damit im Lastwiderstand $R_{\rm L}$ eine Leistung von $P_{\rm RL.soll} = 3\,{\rm W}$ umgesetzt wird?
- **3** Welche Leistung P_{Tr} wird dabei im Transistor umgesetzt?

Lösung zu Aufgabe 4.3

Einschaltwiderstand:

$$R_{\rm DS} = \frac{1}{K \cdot (U_{\rm IH} - U_{\rm th})} = \frac{1}{1 \frac{A}{V^2} \cdot 4 \, V} = 0.25 \, \Omega$$

Relative Pulsbreite:

$$P_{
m RL.max} pprox rac{U_{
m V}^2}{R_{
m L}} = rac{(10\,{
m V})^2}{10\,\Omega} = 10\,{
m W}$$
 $\eta = rac{P_{
m RL.soll}}{P_{
m RL.max}} = 30\%$

3 Leistungsumsatz im Transistor:

$$P_{\mathrm{Tr}} = \frac{R_{\mathrm{DS}}}{R_{\mathrm{L}}} \cdot P_{\mathrm{RL.soll}} = \frac{3\,\mathrm{W}}{40}$$

Aufgabe 4.4: FCMOS-Gatter

Entwerfen Sie je ein FCMOS-Gatter

mit der Funktion:

$$y_1 = \overline{((x_1 \wedge x_2) \vee x_3) \wedge (x_4 \vee x_5)}$$

mit der Funktion:

$$y_2 = \bar{x}_1 \vee \bar{x}_2 \vee \overline{(x_1 \vee (x_2 \wedge x_3))}$$

1. MOS-Transistoren

5. Aufgaben

Lösung zu Aufgabe 4.4

1

$$\begin{array}{rcl} y_1 & = & \overline{((x_1 \wedge x_2) \vee x_3) \wedge (x_4 \vee x_5)} \\ f_{\rm n} & = & ((x_1 \wedge x_2) \vee x_3) \wedge (x_4 \vee x_5) \\ f_{\rm p} & = & ((\bar{x}_1 \vee \bar{x}_2) \wedge \bar{x}_3) \vee (\bar{x}_4 \wedge \bar{x}_5) \end{array}$$

2

$$y_{2} = \underline{\bar{x}_{1} \vee \bar{x}_{2} \vee \overline{(x_{1} \vee (x_{2} \wedge x_{3}))}}$$

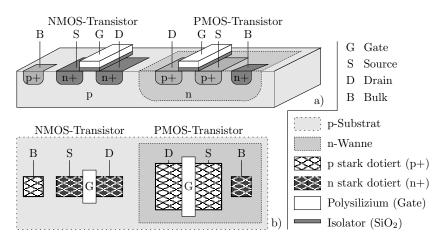
$$= \underline{x_{1}x_{2} (x_{1} \vee (x_{2}x_{3}))}$$

$$= \underline{x_{1}x_{2} \vee x_{1}x_{2}x_{3}}$$

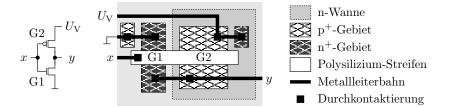
$$= \underline{x_{1}x_{2}}$$

$$f_{n} = x_{1}x_{2}$$

$$f_{p} = \bar{x}_{1} \vee \bar{x}_{2}$$



Geometrischer Entwurf

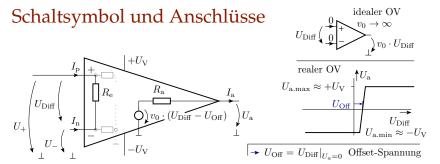


3D-Ansicht eines NMOS- und eines PMOS-Transistor



Geometrischer Entwurf eines Inverters

Geometrischer Entwurf eines Komplexgatters

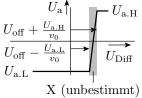


Operationsverstärker

2. Operationsverstärker

Wichtige Kenngrößen:

		ideal	real
Spannungsverstärkung	$v_0 = \frac{\mathrm{d}U_\mathrm{a}}{\mathrm{d}U_\mathrm{Diff}}$	∞	$10^4 \dots 10^6$
Eingangswiderstand	$R_{\rm e} = \frac{\mathrm{d}U_{\mathrm{Diff}}}{\mathrm{d}\frac{I_{\mathrm{p}} - I_{\mathrm{n}}}{2}}$	∞	$1\mathrm{M}\Omega\dots1\mathrm{T}\Omega$
Ausgangswiderstand	$R_{\rm a} = \frac{\mathrm{d}\tilde{U_{\rm a}}}{\mathrm{d}I_{\rm a}}$	0	$2\Omega\dots 100\Omega$
Offset-Spannung	$U_{\text{off}} = U_{\text{Diff}} _{U_{\text{a}}=0}$	0	$10\mathrm{mV}$

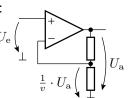


2. Operationsverstärker

Ein Operationsverstärker hat in der Regel nicht den auf der Folie eingezeichneten Masseanschluss. Wird der nicht gebraucht?

 Die Eingangs-Offset-Spannung ist viel größer als der Ausgangsspannungsbereich geteilt durch die Verstärkung. Unbeschaltet nur als Schwellwertschalter nutzbar:

$$U_{\rm a} = \begin{cases} U_{\rm a.L} & U_{\rm Diff} < U_{\rm off.min} - \frac{U_{\rm a.L}}{v_0} \\ U_{\rm a.H} & U_{\rm Diff} > U_{\rm off.max} + \frac{U_{\rm a.H}}{v_0} \\ \mathbf{X} & {\rm sonst} \end{cases}$$

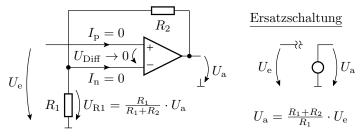


Der Betrieb als Verstärker verlangt eine Rückkopplung, d.h. eine

Subtraktion eines Teils von $U_{\rm a}$ von $U_{\rm Diff}$, z.B.:

$$\begin{array}{rcl} U_{\rm a} &=& v_0 \cdot \left(U_{\rm e} + U_{\rm off} - \frac{U_{\rm a}}{v}\right) \\ U_{\rm a} &=& \frac{v_0}{1 + \frac{v_0}{v}} \cdot \left(U_{\rm e} + U_{\rm off}\right) \\ &\approx& v \cdot \left(U_{\rm e} + U_{\rm off}\right) \end{array}$$

Für beide Anwendungen braucht der Operationsverstärker keinen Masseanschluss.



Verstärker

Nichtinvertierender Verstärker

$$\begin{array}{rcl} U_{+} & = & U_{\mathrm{e}} \\ U_{-} & = & \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{\mathrm{a}} \\ \\ U_{\mathrm{a}} & = & \lim_{v_{0} \to \infty} v_{0} \cdot (U_{+} - U_{-}) = \lim_{v_{0} \to \infty} v_{0} \cdot \left(U_{\mathrm{e}} - \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{\mathrm{a}} \right) \\ \\ & = & \lim_{v_{0} \to \infty} \frac{v_{0}}{1 + \frac{v_{0}}{R_{1}}} \cdot U_{\mathrm{e}} = \lim_{v_{0} \to \infty} \frac{\frac{R_{1} + R_{2}}{R_{1}}}{\frac{R_{1} + R_{2}}{V_{0} \cdot R_{1}} + 1} \cdot U_{\mathrm{e}} = \frac{R_{1} + R_{2}}{R_{1}} \cdot U_{\mathrm{e}} \end{array}$$

2. Operationsverstärker

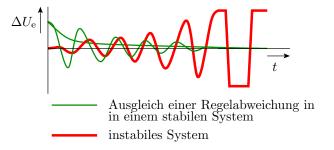
Verkürzter Rechenweg

Die Rückkopplung

$$(U_{\mathbf{a}} \uparrow \mapsto U_{\mathrm{Diff}} \downarrow) \land (U_{\mathbf{a}} \downarrow \mapsto U_{\mathrm{Diff}} \uparrow)$$

regelt die Eingangsspannungsdifferenz gegen Null:

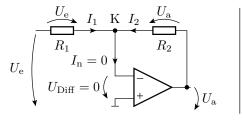
$$U_{\text{Diff}} = U_+ - U_- \to 0$$

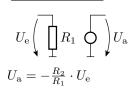

Aus

$$\begin{array}{rcl} U_{+} & = & U_{\rm e} \\ & \\ U_{-} & = & \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{\rm a} \\ \\ U_{+} - U_{-} & = & U_{\rm e} - \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{\rm a} = 0 \end{array}$$

ist die Übertragungsfunktion fast ablesbar.

Generelles Problem


 Eine Rückkopplung führt zu einem Regelkreis und ein falsch dimensionierter Regelkreis kann schwingen:

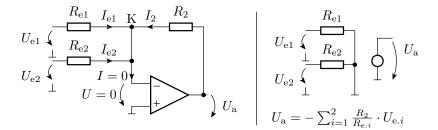

- Die heutigen Operationsverstärker haben nur noch eine geringe Schwingungsneigung.
- Bei Fehlverhalten, Spannungen mit Oszi kontrollieren.

Invertierender Verstärker

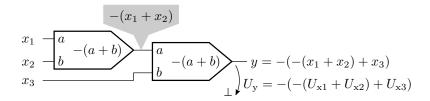
Ersatzschaltung

$$K: I_{1} + I_{2} = 0$$

$$\frac{U_{e}}{R_{1}} + \frac{U_{a}}{R_{2}} = 0$$

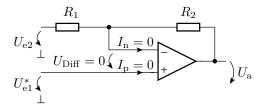

$$U_{a} = -\frac{R_{2}}{R_{1}} \cdot U_{e}$$

Rechenelemente


Summationsverstärker (Addition)

$$\begin{split} \mathbf{K} : I_{\text{e1}} + I_{\text{e2}} + I_2 &= 0 \\ \frac{U_{\text{e1}}}{R_{\text{e1}}} + \frac{U_{\text{e2}}}{R_{\text{e2}}} + \frac{U_{\text{a}}}{R_2} &= 0 \\ U_{\text{a}} &= -\left(\frac{R_2}{R_{\text{e1}}} \cdot U_{\text{e1}} + \frac{R_2}{R_{\text{e2}}} \cdot U_{\text{e2}}\right) \end{split}$$

Subtraktion mit Summationsverstärkern



Ū≱.

Differenzverstärker

- Nur der »+«-Anschluss steht exklusiv als Eingang zu Verfügung.
- Auf den Minuseingang muss zusätzlich wie beim Nichtinvertierende Verstärker $\frac{U_a}{v}$ rückgekoppelt werden.
- \blacksquare Am Minuseingang kommt von $U_{\mathrm{e}2}$ nur der $\frac{R_2}{R_1+R_2}$ -te Teil an.

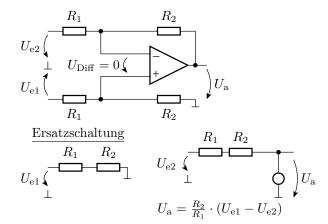
$$U_{+} = U_{e1}^{*} = U_{-} = \frac{R_{2}}{R_{1} + R_{2}} \cdot U_{e2} + \frac{R_{1}}{R_{1} + R_{2}} \cdot U_{a}$$

$$U_{a} = \frac{R_{1} + R_{2}}{R_{1}} \left(U_{e1}^{*} - \frac{R_{2}}{R_{1} + R_{2}} \cdot U_{e2} \right)$$

$$U_{\rm a} = \frac{R_1 + R_2}{R_1} \left(U_{\rm e1}^* - \frac{R_2}{R_1 + R_2} \cdot U_{\rm e2} \right)$$
$$U_{\rm a} = \frac{R_2}{R_1} \cdot \left(\frac{R_1 + R_2}{R_2} \cdot U_{\rm e1}^* - U_{\rm e2} \right)$$

Mit einem zusätzlichen Spannungsteiler:

$$U_{\rm e1}^* = \frac{R_2}{R_1 + R_2} \cdot U_{\rm e1}$$


ergibt sich ein Differenzverstärker mit der Differenzverstärkung

$$v_{\text{Diff}} = \frac{R_2}{R_1}$$
:

$$U_{\rm a} = \frac{R_2}{R_1} \cdot (U_{\rm e1} - U_{\rm e2})$$

Differenzverstärker komplett

Komparator

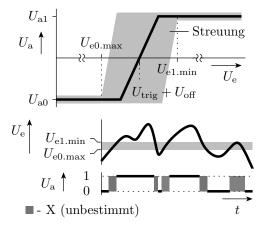
Soll-Funktion und Realisierung

Abbildung einer stetigen Größe auf eine zweiwertige Größe³:

$$f(U_{\rm e}) = \begin{cases} 0 & \text{wenn } U_{\rm e} < U_{\rm trig} \\ 1 & \text{sonst} \end{cases}$$
 (1)

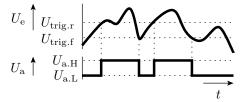
 $(U_{\rm trig}$ – Schaltspannung des Komparators).

 Nachbildung durch einen Operationsverstärker plus Quelle mit der Schaltspannung:



lacktriangle Die Quellspannung $U_{
m trig}$ kann auch mit einem Spannungsteiler aus der Versorgungsspannung gebildet werden.

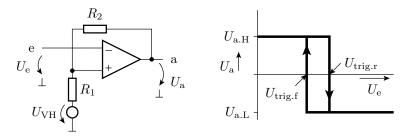
 $^{^3\}mathrm{Das}$ verstand man bis vor Kurzem noch unter »Digitalisierung«.



Abweichung vom Idealverhalten

Schwellwertschalter mit Hysterese

- Einschaltschwelle > Ausschaltschwelle
- Überschreiten $U_{\text{trig,r}} \Rightarrow \text{kippen}$ in den Zustand $U_{\text{trig}} = U_{\text{trig,f}}$
- Unterschreiten $U_{\rm trig.f} \Rightarrow$ kippen in den Zustand $U_{\rm trig} = U_{\rm trig.r}$


Schaltspannung für steigende (rising) Eingangsspannungen $U_{\rm trig.r}$ $U_{\rm trig.f}$ Schaltspannung für fallende (falling) Eingangsspannungen

 $U_{\rm a.H}$ große Ausgangsspannung (High, log. 1)

 $U_{\mathrm{a.L}}$ kleine Ausgangsspannung (Low, log. 0)

Invertierter Schwellwertschalter mit OV

$$U_{\mathrm{trig.r}} = U_{\mathrm{VH}} + \frac{R_1}{R_1 + R_2} \cdot \left(U_{\mathrm{a.H}} - U_{\mathrm{VH}} \right)$$

$$U_{\text{trig.f}} = U_{\text{VH}} + \frac{R_1}{R_1 + R_2} \cdot (U_{\text{a.L}} - U_{\text{VH}})$$

 $(U_{VH} - Hilfsspannung)$

Beispiel

$$U_{\text{a.H}} = U_{\text{V}} = 5 \,\text{V}$$
 $U_{\text{trig.r}} = 3 \,\text{V}$ $U_{\text{trig.f}} = 2 \,\text{V}$

Bestimmung des Spannungsteilerverhältnisses

$$k = \frac{R_1}{R_1 + R_2}$$

und der Hilfsspannung U_{VH} mit folgendem Gleichungssystem:

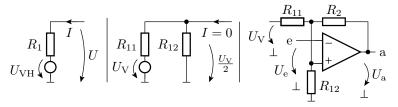
$$3 V = U_{VH} + k \cdot (5 V - U_{VH})$$

 $2 V = U_{VH} + k \cdot (-U_{VH})$

• $U_{\rm VH} \Rightarrow$ Quotienten beider Gleichungen

$$\begin{array}{ccc} \frac{3\,{\rm V} - U_{\rm VH}}{2\,{\rm V} - U_{\rm VH}} & = & \frac{5\,{\rm V} - U_{\rm VH}}{-U_{\rm VH}} \\ & U_{\rm VH} & = & 2.5\,{\rm V} \end{array}$$

3. Komparator


• $k \Rightarrow$ Differenz beider Gleichungen:

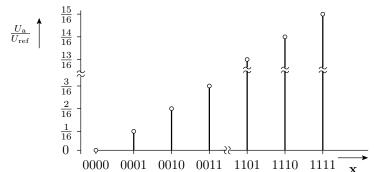
$$1V = k \cdot 5V$$
$$k = 0.2$$

- willkürliche Festlegung: $R_1 = 10 \,\mathrm{k}\Omega$
- Berechnung von R_2 aus

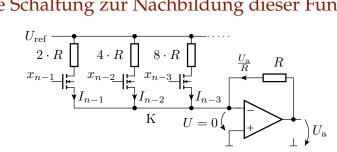
$$0.2 = \frac{R_1}{R_1 + R_2} \implies R_2 = 40 \,\mathrm{k}\Omega$$

■ Transformation des Zweipols aus U_{VH} und R_1 in einen funktionsgleichen Zweipol aus $U_{\rm V}$ und Spannungsteiler:

$$R_{11} = R_{12} = 2 \cdot R_1 = 20 \,\mathrm{k}\Omega$$


Digital-Analog-Umsetzer

Digital-Analog-Umsetzer (DAU)

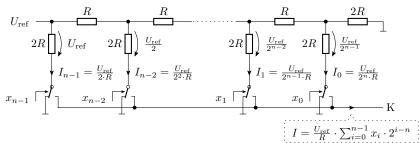

Ausgabe eines Bitvektors als Spannung:

$$\mathbf{x} = x_{n-1} x_{n-2} \dots x_0 \Rightarrow U_{\mathbf{a}}(\mathbf{x}) = \frac{U_{\text{ref}}}{2^n} \cdot \sum_{i=0}^{n-1} x_i \cdot 2^i$$

 $(x_i \in \{0, 1\} - \text{Binärziffern}; n - \text{Bitanzahl}; U_{\text{ref}} - \text{Referenzspannung}).$

Eine Schaltung zur Nachbildung dieser Funktion

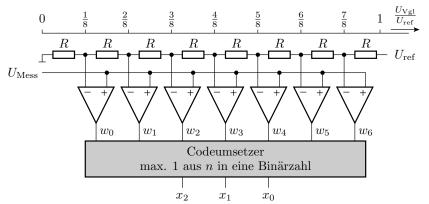
Stromquellen mit binär abgestuften Strömen:


$$I_i = \frac{U_{\text{ref}}}{R} \cdot 2^{i-n}$$

- Transistorschalter, die die Ströme wahlweise in den Summationspunkt leiten oder nicht.
- Summationsverstärker für die ausgewählten Ströme:

$$U_{\rm a} = -R \cdot \sum_{i=0}^{n-1} x_i \cdot I_i = -\frac{U_{\rm ref}}{2^n} \cdot \sum_{i=0}^{n-1} x_i \cdot 2^i$$

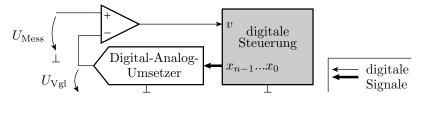
Digital-Analog-Umsetzer mit R2R-Netzwerk


- Die Fertigung von sehr unterschiedlich großen Widerständen mit exaktem Widerstandsverhältnis ist schwierig.
- Ein R2R-Netzwerk ist eine Spannungsteilerkette, die die eingangsseitige Referenzspannung fortlaufend halbiert.
- Die Transistorschalter an den Fußpunkten leiten die Ströme bei $x_i = 1$ in den Summationspunkt K und bei $x_i = 0$ zur Masse.

Analog-Digital-Umsetzer

Paralleler Analog-Digital-Umsetzer (ADU)

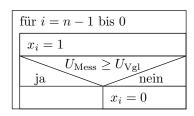
- Zuordnung von 1 aus n Digitalwerten in einem Schritt.
- Paralleler Vergleich der analogen Eingangsspannung mit 2ⁿ-1 Vergleichsspannungen. Erfordert $2^n - 1$ Komparatoren.

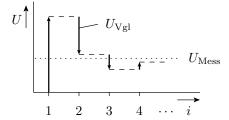


Funktion des Codeumsetzers

Komparatorausgabe	Ergebnis	
$w_6w_5 w_4w_3w_2 w_1w_0$	$x_2x_1x_0$	
0000000	000	
0000001	001	
0000011	010	
0000111	011	
0001111	100	
0011111	101	
0111111	110	
1111111	111	

Serielle Umsetzer


Ein Vergleich je Wandlerschritt:



$$v = \left\{ egin{array}{ll} 0 & {
m wenn} \ U_{
m Mess} < U_{
m Vgl} \ 1 & {
m sonst} \end{array}
ight.$$

Sukzessive Approximation

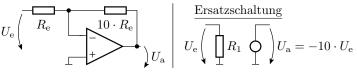
- schnellster serieller Wandleralgorithmus
- ein Vergleich je Bit

Aufgaben

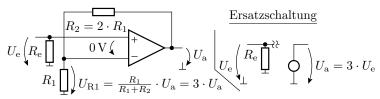
Aufgabe 4.5: Verstärkerentwurf

Entwickeln Sie Schaltungen mit Operationsverstärkern, die das Verhalten der nachfolgenden Ersatzschaltung nachbilden mit den Parametern:

1
$$v_{\mathrm{U}} = -10 \text{ und } R_{\mathrm{e}} = 10 \, \mathrm{k}\Omega$$

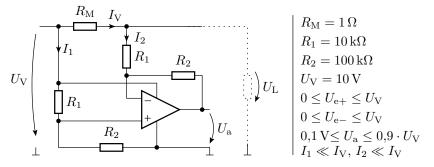

$$v_{\mathrm{U}}=3$$
 und $R_{\mathrm{e}}=100\,\mathrm{k}\Omega$.

$$U_{\rm e}$$
 $R_{\rm e}$ $U_{\rm a} = v_{\rm U} \cdot U_{\rm e}$

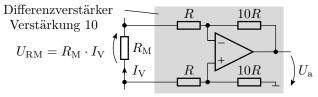


Lösung zu Aufgabe 4.5

II $v_{\rm U}=-10$ und $R_{\rm e}=10\,{\rm k}\Omega$: invertierender Verstärker mit $R_1=R_{\rm e}$ und $R_2=10\cdot R_1=100\,{\rm k}\Omega$:


2 $v_{\rm U}=3$ und $R_{\rm e}=100\,{\rm k}\Omega$: nicht invertierender Verstärker mit $R_{\rm e}$ parallel zum Eingang und $R_2=2\cdot R_1$.

Aufgabe 4.6: Analyse einer OV-Schaltung



- Grundbeschaltung des Operationsverstärkers?
- **2** Bestimmen Sie die Funktion $U_a = f(I_V)$ für $I_2 \ll I_V$?
- \blacksquare Für welchen Bereich von I_{V} gilt diese Funktion?

Lösung zu Aufgabe 4.6

Grundschaltung:

Funktion:

$$U_{\rm a} = 10 \cdot U_{\rm RM} = 10 \,\Omega \cdot I_{\rm V}$$

 \blacksquare Wertebereich I_{V} :

$$0.1 \, \mathrm{V} \leq U_{\mathrm{a}} \leq 9 \, \mathrm{V}$$
 und $I_{\mathrm{V}} = \frac{U_{\mathrm{a}}}{10 \, \Omega}$
 $10 \, \mathrm{mA} \leq I_{\mathrm{V}} \leq 900 \, \mathrm{mA}$

Aufgabe 4.7: Entwurf von Rechenelementen

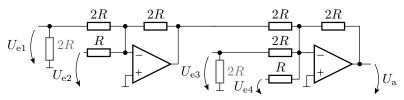
Entwickeln Sie mit Hilfe von Operationsverstärkern eine Schaltung mit der Funktion:

$$U_{\rm a} = U_{\rm e1} + 2 \cdot U_{\rm e2} - U_{\rm e3} - 2 \cdot U_{\rm e4}$$

Der Eingangswiderstand soll für jeden Eingang

$$R_{\mathrm{e.}i} = \frac{U_{\mathrm{e.}i}}{I_{\mathrm{e.}i}} = 10 \,\mathrm{k}\Omega$$

betragen.


Hinweis: Es werden mindesten zwei Operationsverstärker und 9 Widerstände benötigt.

Lösung zu Aufgabe 4.7

Aufspaltung in zwei Summationsverstärker:

$$U_{\rm a} = U_{\rm e1} + 2 \cdot U_{\rm e2} - U_{\rm e3} - 2 \cdot U_{\rm e4}$$

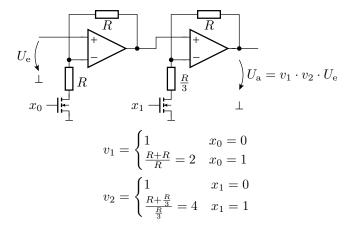
= -(-(U_{\rm e1} + 2 \cdot U_{\rm e2}) + U_{\rm e3} + 2 \cdot U_{\rm e4})

Bei Wahl von $R=10\,\mathrm{k}\Omega$ haben die Eingänge 2 und 4 bereits den gewünschen Eingangswiderstand von $10\,\mathrm{k}\Omega$. An den beiden anderen Eingängen beträgt $R_{\mathrm{e},i}=2\cdot R$ und muss durch Parallelschaltung von je $20\,\mathrm{k}\Omega$ auf $10\,\mathrm{k}\Omega$ verringert werden.

6. Aufgaben

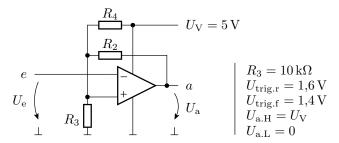
2. Operationsverstärker

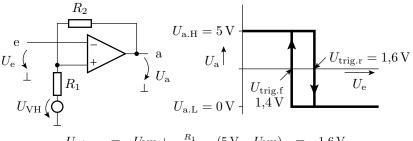
Aufgabe 4.8: Verstärker mit umschaltbarer Verstärkung


Konstruieren Sie eine Verstärkerschaltung, deren Verstärkung mit einem 2-Bit-Vektor in folgender Weise eingestellt werden kann:

$\mathbf{x} = (x_1 x_0)$	11	10	01	00
$v_{\rm U} = \frac{U_{\rm a}}{U_{\rm e}}$	8	4	2	1

Hinweis: Es werden mindestens zwei Operationsverstärker, zwei NMOS-Transistoren und vier Widerstände benötigt.


Lösung zu Aufgabe 4.8


Aufgabe 4.9: Schwellwertschalter mit Hysterese

Legen Sie für den invertierenden Komparator mit Hysterese in der nachfolgenden Abbildung die Widerstandswerte R_1 und R_2 so fest, dass der Komparator die vorgegebene Ein- und Ausschaltschwelle besitzt.

Lösung zu Aufgabe 4.9

$$\begin{array}{lcl} U_{\rm trig.r} & = & U_{\rm VH} + \frac{R_1}{R_1 + R_2} \cdot (5\,{\rm V} - U_{\rm VH}) & = & 1.6\,{\rm V} \\ U_{\rm trig.f} & = & U_{\rm VH} + \frac{R_1}{R_1 + R_2} \cdot (-U_{\rm VH}) & = & 1.4\,{\rm V} \end{array}$$

Differenz beider Gleichungen:

$$\frac{R_1}{R_1 + R_2} \cdot 5 \,\text{V} = 0.2 \,\text{V} \ \Rightarrow \ R_2 = 24 \cdot R_1$$

Eingesetzt in die 2. Gleichung: $\frac{24}{25} \cdot U_{VH} = 1.4 \, V$

$$\frac{R_1}{\text{gesucht}}$$

$$\frac{25}{24} \cdot 1,4 \text{ V}$$

$$\frac{R_3}{R_3 + R_4} \cdot 5 \text{ V} = \frac{25}{24} \cdot 1,4 \text{ V}$$

$$R_4 \approx 2,429 \cdot R_3$$

$$R_1 = R_3 \parallel R_4 = 0,708 \cdot R_3$$

$$R_2 = 24 \cdot R_1 = 17 \cdot R_3$$

mit $R_3 = 10 \,\mathrm{k}$ ergibt sich $R_4 = 24{,}29 \,\mathrm{k}$ und $R_2 = 170 \,\mathrm{k}$.