

Elektronik II Grosse Übung zu Foliensatz E2 F3 G. Kemnitz

Institut für Informatik, TU Clausthal (E2-GF3) 20. Juni 2023

Inhalt F3: Simulation im stationären Betrieb

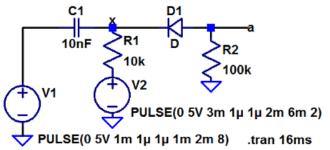
Zeitdisk. Simulation

- 1.1 Geschaltetet RC-Glieder
- 1.2 Gatterschaltzeiten
- 1.3 Kippstufen
- 1.4 Sinussignale

Frequenzbereich

- 2.1 Frequenzgang
- 2.2 Laplace-Transformierte

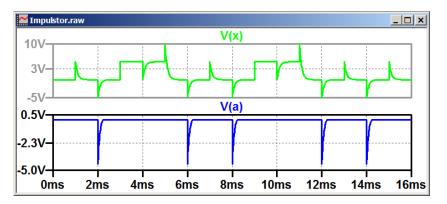
- 2.3 Verstärker
- 2.4 Filter Spektralanalyse
- 3.1 Fouriertransformation
- 3.2 Klirrfaktor Rauschen
- 4.1 Rauschquellen
- 4.2 Rauschquellentransformation Komplexaufgabe Verstärker


Zeitdisk. Simulation

1. Zeitdisk. Simulation

Aufgabe 3.1: Impulstor

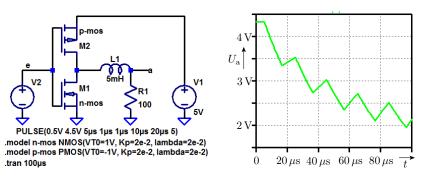
Ein Impulstor diente früher 1 zur Erzeugung von Setz- und Rücksetzimpulsen an der aktiven Flanke des Takts (V1), die mit einer logischen $\gg 1$ « am Gate (V2) untedrückt werden konnten.


Bestimmen Sie die Zeitverläufe von a und x und beschreiben Sie die Funktion der Schaltung.

¹Als Rechner noch aus Röhren und diskreten Transistoren bestanden.

1. Zeitdisk. Simulation

Zur Kontrolle



- An x addieren sich die Nadelimpuls und die Spannung von V2.
- Die Diode lässt nur Pulse nach unten durch, wenn V2 kleiner als die Sprunghöhe ist.

Geschaltetet RC-Glieder

1. Zeitdisk. Simulation 1. Geschaltetet RC-Glieder

Aufgabe 3.2: Glättungsinduktivität

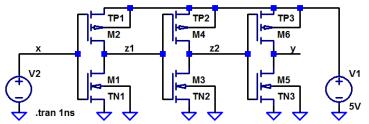
- Verkürzen Sie die Signalperiode der Quelle auf $0.1 \cdot \tau$.
- Erhöhen Sie die Anzahl der simulierten Perioden auf 40 und die Simulationszeit auf $4 \cdot \tau$.

 Untersuchen Sie die mittlere Ausgangsspannung, die sich nach $4 \cdot \tau$ in Abhängigkeit von der relativen Pulsbreite

$$\eta = \frac{t_{\rm ein}}{t_{\rm ein} + t_{\rm aus}}$$

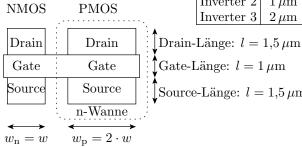
einstellt.

■ Füllen Sie dazu die nachfolgende Tabelle aus:


η	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
$\overline{U}_{\rm a}$									

Gatterschaltzeiten

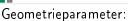
Aufgabe 3.3: CMOS-Inverter


PULSE(0 5V 50p 50p 50p 350p 800p 2)

- .model myNMOS NMOS(VT0=0.73V Kp=69µ lambda=33m tox=25n CJ=360µ CJSW=250p)
- .model myPMOS PMOS(VT0=-0.75V, Kp=23µ, lambda=55m tox=25n CJ=340µ CJSW=220p)
- .model TP1 ako:myPMOS I=1µ w=2µ ad=3p as=3p pd=7µ ps=7µ
- .model TN2 ako:myNMOS I=1µ w=1µ ad=1.5p as=1.5p pd=5µ ps=5µ .model TP2 ako:myPMOS I=1µ w=2µ ad=3p as=3p pd=7µ ps=7µ
- .model TN3 ako:myNMOS I=1µ w=2µ ad=3p as=3p pd=7µ ps=7µ
- .model TP3 ako:myPMOS I=1µ w=4µ ad=6p as=6p pd=11µ ps=11µ

I/w – Kanallänge / -breite in m; ad / as – Fläche des Drain- / Source-Gebiets in m^2 ; pd / ps – Umfang des Drain- / Source-Gebiets in m.

Geometrie und Verzögerung



	$w_{ m n}$	$w_{ m p}$
Inverter 1	$1\mu\mathrm{m}$	$2\mu\mathrm{m}$
Inverter 2	$1\mu\mathrm{m}$	$2\mu\mathrm{m}$
Inverter 3	$2\mu\mathrm{m}$	$4\mu\mathrm{m}$

Gate-Länge: $l = 1 \,\mu\text{m}$

Source-Länge: $l = 1.5 \,\mu\text{m}$

Inv. 1	Kanal-	Kanal-	Source-	Source-	Drain-	Drain-
	länge	breite	Fläche	Umf.	Fläche	Umf.
	(l)	(w)	(as)	(ps)	(ad)	(pd)
NMOS	1 µm	1 µm	$1,5~\mu\mathrm{m}^2$	5 µm	$1.5~\mu\mathrm{m}^2$	5 µm
PMOS	1 um	2 um	$3 \mu m^2$	7 um	$3 \mu m^2$	7 um

Inv. 2	Kanal-	Kanal-	Source-	Source-	Drain-	Drain-
	länge	breite	Fläche	Umf.	Fläche	Umf.
	(l)	(w)	(as)	(ps)	(ad)	(pd)
NMOS	1 µm	1μm	$1.5~\mu\mathrm{m}^2$	5 µm	$1.5~\mu\mathrm{m}^2$	5 µm
PMOS	1μm	2 μm	$3~\mu\mathrm{m}^2$	7 μm	$3~\mu\mathrm{m}^2$	7 μm
Inv. 3						
NMOS	1 µm	2 µm	$3~\mu\mathrm{m}^2$	7 μm	$3 \ \mu \mathrm{m}^2$	7 µm
PMOS	1μm	4 µm	$6~\mu\mathrm{m}^2$	11 µm	$6~\mu\mathrm{m}^2$	11 µm

.model TN2 ako: myNMOS l=1 μ w=1 μ ad=1,5 μ as=1,5 μ pd=5 μ ps=5 μ

.model TP2 ako: myPMOS l=1 μ w=2 μ ad=3 μ as=3 μ pd=7 μ ps=7 μ

Gatekapazität: $C_{
m G} = arepsilon_{
m SiO_2} \cdot rac{1 \cdot exttt{w}}{ exttt{tox}}$

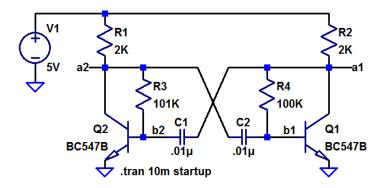
Drain-Bulk-Kapaz.: $C_{\mathrm{DB}} = \mathtt{Cjsw} \cdot \mathtt{pd} + \mathtt{Cj} \cdot \mathtt{ad}$

Der Simulator berechnet

- die Umladeströme unter Nutzung der Spice-Parameter VTO, KP, ... des Basismodells myNMOS bzw. myPMOS
- die Ausgangskapazität der Draingebiete

$$C_{\mathrm{DB}} = \mathtt{Cjsw} \cdot \mathtt{Pd} + \mathtt{Cj} \cdot \mathtt{Ad}$$

die Eingangskapazität der Folgegatter

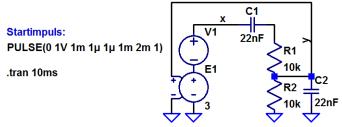

$$C_{\rm G} = \varepsilon_{\rm SiO_2} \cdot \frac{1 \cdot w}{\rm tox},$$

(Cjsw – Dicke des Gateoxids; Cjsw – umfangbezogenen Kapazität; Pd – Umfang des Drain-Gebiets; Pd – Fläche des Drain-Gebiets). Beispiel: Drain-Umfang 4 μ m; Drain-Fläche 1 μ m 2 , Cj $=360\,rac{\mu {
m F}}{-}$, Cjsw = $250 \frac{pF}{mr^2}$:

$$C_{\rm DB} = {\tt Cj} = 250\,rac{
m pF}{
m m}\cdot 4\,\mu{
m m} + {\tt Ps} + 360\,rac{\mu{
m F}}{
m m}\cdot 1\,\mu{
m m}^2 = 1{,}36\,{
m fF}$$

Kippstufen

Aufgabe 3.4: Astabiler Multivibrator

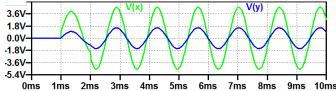

- Simulieren Sie die dargestellter Schaltung.
- Was passiert, wenn Sie $R_3=R_4=100\,\mathrm{k}\Omega$ wählen?
- Ändern Sie die Schaltung so, dass die relative Pulsbreite η bei gleicher Periode am Ausgang 25% beträgt.

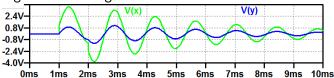
Sinussignale

Aufgabe 3.5: Wien-Oszillator

Die Wienbrücke, ein Spannungsteiler aus einer RC-Reihen- und einer RC-Paralleschaltung, hat für eine bestimmte Frequenz das Spannungsteilerverhältnis $\frac{1}{3}$. Rückgekoppelt mit einem spannungsgesteuerten Verstärker mit der Verstärkung 3 erzeugt die Schaltung, wenn man sie mit einem Impuls anregt, ein Sinussignal.

 \blacksquare Bestimmen Sie die Zeitverläufe der Signale x und y.

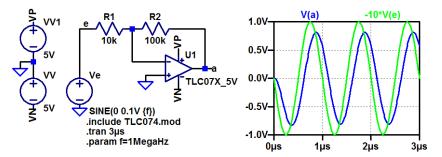

- Berechnen Sie die Frequenz, bei der das Spannungsteilerverhältnis der Wienbrücke 1/3 ist, und vergleichen Sie diese mit der Frequenz, mit der der Oszillator schwingt.
- 3 Was passiert, wenn die Amplitude des Startpulses auf zwei Volt vergrößert wird?
- Wie ändert sich der Signalverlauf von x, wenn die Verstärkung des spannungsgesteuerten Verstärkers auf 2,9 verringert wird?
- Wie ändert sich der Signalverlauf von x, wenn die Verstärkung auf 3,1 vergrößert wird?


Wienbrücke im Frequenzbereich

Zur Kontrolle

Zeitverläufe der Signale x und y:

- 🙎 Etwa 1 kHz.
- 3 Verdopplung aller Amplituden.
- Abklingen des Sinussignals:


Aufschwingen des Sinussignals.

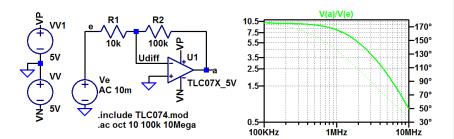
Frequenzbereich

Frequenzgang

Aufgabe 3.6: Invertierender Verstärker mit OV

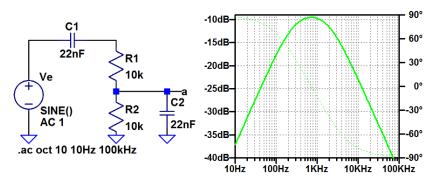
Bestimmen Sie für die Frequenzen 300 kHz, 1 MHz, 3 MHz und 10 MHz mit einer zeitdiskreten Simulation die Ausgangsamplituden und Verzögerungen.

Errechnen Sie aus den Eingangs- und Ausgangsamplituden und den Verzögerungen und Frequenzen die Verstärkungen und Phasenverschiebungen.


f	300 kHz	1 MHz	3 MHz	10 MHz
Amplitude von $u_{ m a}$				
Verzögerung von $u_{ m e}$				
nach $u_{ m a}$				
Betrag der Verstärkung				
Phasenverschiebung				
Verstärkung				

- 3 Kontrollieren Sie das Ergebnis mit einer AC-Simulation.
- Lesen Sie aus dem Ergebnis der AC-Simulation die Grenzfrequenz und die Transitfrequenz des Verstärkers ab.

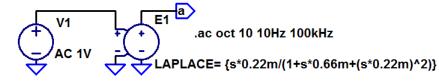
Zur Kontrolle für Aufgabenteil 3


2. Frequenzbereich

Laplace-Transformierte

Aufgabe 3.7: Wien-Brücke

- II Stellen Sie die Gleichung für das Verhältnis aus Ausgangs- und Eingangsspannung als gebrochene Funktion von $j\omega$ auf.
- 2 Ersetzen Sie $j\omega$ durch die komplexe Variable s.


Kontrollieren Sie, dass Sie die Funktion der Schaltung auch mit einer spannungsgesteuerten Spannungsquelle mit der Laplace-Transformierten als Übertragungsfunktion simuliert werden kann.

$$\frac{\underline{U}_{\mathbf{a}}}{\underline{U}_{\mathbf{e}}} = \frac{R \parallel \frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + \left(R \parallel \frac{1}{j\omega C}\right)} = \frac{\frac{R}{1+j\omega RC}}{R + \frac{1}{j\omega C} + \frac{R}{1+j\omega RC}}$$

$$= \frac{j\omega RC}{1 + 3 \cdot j\omega RC - (\omega RC)^2}$$

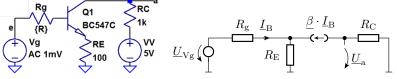
$$\text{mit } s = j\omega$$

$$= \frac{s \cdot RC}{1 + 3 \cdot s \cdot RC + (s \cdot RC)^2}$$



Verstärker

Aufgabe 3.8: NF-Verstärker mit


Stromgegenkopplung

- Legen Sie mit einem DC-Sweep den Gleichanteil von Vg fest.
- Bestimmung des Frequenzgangs V(a)/V(e) und der Übergangsfrequenz der Spannungsverstärkung für $R_{\rm g}=100\,\Omega$ und $1\,{\rm k}\Omega$.
- Bestimmen Sie für die Stromverstärkung lc(Q1)/lb(Q1) den Betrag für niedrige Frequenzen in dB sowie die Übergangs- und die Transitfrequenz.

$$\begin{array}{rcl} \underline{U}_{\mathrm{Vg}} & = & \left(R_{\mathrm{g}} + R_{\mathrm{E}} \cdot \left(1 + \underline{\beta}\right)\right) \cdot \underline{I}_{\mathrm{B}} \\ \underline{U}_{\mathrm{a}} & = & -R_{\mathrm{C}} \cdot \underline{\beta} \cdot \underline{I}_{\mathrm{B}} = \dots \\ \\ \underline{U}_{\mathrm{a}} & = & -\frac{R_{\mathrm{C}} \cdot \underline{U}_{\mathrm{Vg}}}{\left(R_{\mathrm{g}} + R_{\mathrm{E}}\right) \cdot \left(\frac{1}{\beta_{0}} + \frac{j \cdot f}{f_{\mathrm{T}}}\right) + R_{\mathrm{E}}} = \frac{v_{\mathrm{V0}} \cdot \underline{U}_{\mathrm{Vg}}}{1 + \frac{j \cdot f}{f_{\mathrm{v0}}}} \\ \\ & = & -\frac{R_{\mathrm{C}} \cdot \underline{U}_{\mathrm{Vg}}}{\left(R_{\mathrm{g}} + R_{\mathrm{E}}\right) \cdot \frac{1}{\beta} + R_{\mathrm{E}}} \end{array}$$

mit $v_{\rm V0} \approx -\frac{R_{\rm C}}{R_{\rm E}}$ und $f_{\rm V0} \approx f_{\rm T} \cdot \frac{R_{\rm E}}{R_{\rm Q} + R_{\rm E}}$, $f_{\rm T} = \beta \cdot f_0$ ($f_{\rm T}$ Transitfrequenz, f_0 obere Grenzfrequenz der Stromverstärkung, β Stromverstärkung für niedrige Frequenzen).

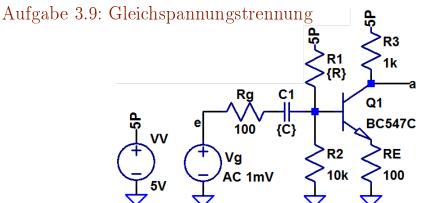
Į į

Zur Kontrolle

- DC-Analyse zur Festlegung des Gleichanteils: von Vg. Simulationskommando:
 - .step param R list 100 1k
 - .dc Vg 0.4V 1.2V 0.01V

Sinnvolle Festlegung des Gleichanteil: 0,85V

 \square Frequenzgang V(a)/V(e):


.ac oct 10 1E5 1E8

.ac oct 10 1E5 1E	0	
	$R_{\rm g} = 100\Omega$	$R_{ m g} = 1{ m k}\Omega$
ÜbergFreq. SpgVerst	30 MHz	4 MHz

Stromverstärkung (β_0 – Betrag für niedrige Frequenzen, f_0 — Übergangsfrequenz, $f_{\rm T}$ – Transitfrequenz):

$$eta_0 = 52.9\,\mathrm{dB} \mid f_0 = 106.5\,\mathrm{kHz} \mid f_\mathrm{T} = 46.8\,\mathrm{MHz}$$

- Suchen Sie mit ».op« und einer Step-Anweisung für R1 einen Wert zur Einstellung des Arbeitspunktes $V(a) \approx 3 V$.
- 2 Legen Sie mit einer Step-Anweisung den Wert von C so fest, dass die untere Übergangsfrequenz $\leq 200\,\mathrm{Hz}$ beträgt.

f 3 Wie groß ist der Widerstand R

$$f_{\rm u0} = \frac{1}{2\pi RC}$$

der die untere Übergangsfrequenz mit festlegt und aus welchen Widerständen in der Schaltung setzt er sich wie zusammen?

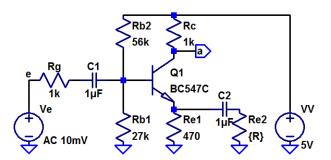
Zur Kontrolle

- II R1 für den Arbeitspunkt $V(a) \approx 3 V$:
 - Simulationskommando:
 - .step param R 20k 100k 1k
 - .op

Ergebnis: $R_1 \approx 47 \, \mathrm{k}\Omega$

- 2 C für die untere Übergangsfrequenz $\leq 200\,\mathrm{Hz}$:
 - Simulationskommando:
 - .step param C list 22n 33n 47n 68n 150n 220n
 - .ac oct 10 1E2 1E6

Ergebnis: $C \approx 150\,\mathrm{nF}$, 147 Hz (für 100 nF ist $f_\mathrm{u0} > 100\,\mathrm{Hz}$)

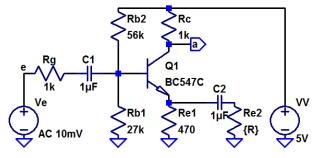

$$R = \frac{1}{2\pi \cdot 147 \,\mathrm{Hz} \cdot 150 \,\mathrm{nF}} = 7218 \,\Omega$$

hauptsächlich Eingangswiderstand $R_1 \parallel R_2 \parallel \beta \cdot R_{\mathrm{E}}$

Aufgabe 3.10: Frequenzabhängige Stromgegenkopplung

In der nachfolgenden Schaltung wird der Gegenkopplungswiderstand für Wechselgrößen mit C_2 und $R_{\rm E2}$ verringert.

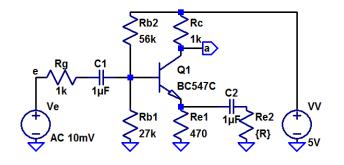
I Kontrollieren Sie, dass $U_{\rm a}$ im Arbeitspunkt 3 V $\pm 10\%$ beträgt und korrigieren Sie bei Bedarf den Wert von $R_{\rm B2}$.



- 2 Bestimmen Sie den Frequenzgang für $R_{\rm E2}=534\,\Omega,\ 127\,\Omega$ und $56\,\Omega.$
- 3 Lesen Sie für alle 3 Widerstandswerte
 - die untere Grenzfrequenz,
 - die Verstärkung im mittleren Bereich und
 - die obere Grenzfrequenz ab.
- Kontrollieren Sie die Ergebnisse rechnerisch über Ersatzschaltungen?

$R_{\rm E2}$	$R_{\rm E} = R_{\rm E1} \parallel R_{\rm E2}$	$v_{ m u} pprox rac{R_{ m C}}{R_{ m E}}$	$f_{ m VO} pprox rac{R_{ m E}}{R_{ m E} + R_{ m g}} f_{ m T}$
534Ω	250		
127Ω	100		
56 Ω	50		

$$(R_{\rm g} = R_{\rm C} = 1 \, \text{k}\Omega, \, R_{\rm E1} = 470 \, \Omega)$$



Unter Vernachlässigung Hochpassverhalten durch C_1 und mit $v_{\rm u} \approx \frac{R_{\rm C}}{R_{\rm E}}$ gilt für die untere Grenzfrequenz:

$$R_{\rm E} = R_{\rm E1} \parallel \left(\frac{1}{j\omega C_2} + R_{\rm E2}\right) = \frac{R_{\rm E1} \cdot \left(\frac{1}{j\omega C_2} + R_{\rm E2}\right)}{R_{\rm E1} + \left(\frac{1}{j\omega C_2} + R_{\rm E2}\right)}$$
$$= \frac{R_{\rm E1} \cdot (1 + j\omega C_2 R_{\rm E2})}{1 + j\omega C_2 (R_{\rm E1} + R_{\rm E2})}; \ v_{\rm u} \approx \frac{R_{\rm C}}{R_{\rm E1}} \cdot \frac{1 + j\omega C_2 (R_{\rm E1} + R_{\rm E2})}{(1 + j\omega C_2 R_{\rm E2})}$$

$$v_{\rm u} \approx \frac{R_{\rm C}}{R_{\rm E1}} \cdot \frac{1 + j\omega C_2 \left(R_{\rm E1} + R_{\rm E2}\right)}{\left(1 + j\omega C_2 R_{\rm E2}\right)} = \frac{R_{\rm C}}{R_{\rm E1}} \cdot \frac{1 + j\frac{f}{f_1}}{\left(1 + j\frac{f}{f_2}\right)}$$

mit $f_1=rac{1}{2\pi C_2(R_{\mathrm{EI}}+R_{\mathrm{E2}})}$ und $f_2=rac{1}{2\pi C_2R_{\mathrm{E2}}}$

	,	, - 22	
	$f \ll f_1$	$f\gg f_2$	$f_1 \ll f$
$v_{ m u}$	$\frac{R_{\rm C}}{R_{\rm E1}}$	$\frac{R_{\rm C} \cdot (R_{\rm E1} + R_{\rm E2})}{R_{\rm E1} \cdot R_{\rm E2}} = \frac{R_{\rm C}}{R_{\rm E1} \ R_{\rm E2}}$	$\frac{R_{\rm C} \cdot j\omega C_2 (R_{\rm E1} + R_{\rm E2})}{R_{\rm E1} \cdot \left(1 + j\frac{f}{f_2}\right)}$

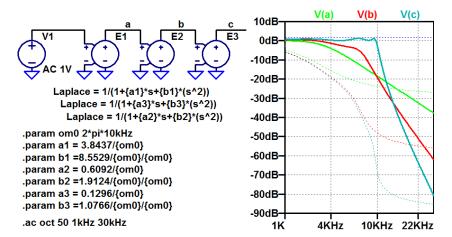
Vergleich Abschätzung und Simulation:

$R_{ m E2}$	$v_{ m u} pprox rac{R_{ m C}}{R_{ m E}}$	$f_{ m VO} pprox rac{R_{ m E}}{R_{ m E} + R_{ m g}} f_{ m T}$	$f_{ m VU}pprox rac{1}{2\pi C_2 R_{ m E2}}$
534Ω		_	
127Ω			
56Ω			

$$(R_{\rm g} = R_{\rm C} = 1 \, \text{k}\Omega, \, R_{\rm E1} = 470 \, \Omega)$$

Filter

Aufgabe 3.11: Tschebyscheff-Tiefpass


Ein Tschebyscheff-Tiefpass 6 Ordnung mit 1dB Restwelligkeit hat nach² die Filterkoeffizienten $a_1=3,8437,\ b_1=8,5529,\ a_2=0,6092,\ b_2=1,9124,\ a_3=0,1296,\ b_3=1,0766.$

- Stellen Sie die Laplace-Transformierte für einen Filter mit der Übergangsfrequenz 10 kHz auf und simulieren Sie den Filter mit einer E-Quelle.
- 2 Entwerfen Sie eine funktionsgleiche Filterschaltung mit drei RLC-Gliedern und zwei Trennverstärkern.
- Entwerfen Sie eine funktionsgleiche Filterschaltung mit 3 beschalteten Operationsverstärkern.
- Monte-Carlo-Simulation mit 1% Bauteilparameterstreuung.

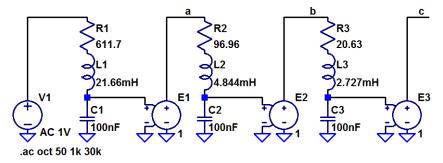
²http://wwwex.physik.uni-ulm.de/lehre/physikalischeelektronik/phys elektr/phys elektrap6.html

Simulation als Kette von Filtern 2. Ordnung

Filterschaltung mit drei RLC-Gliedern

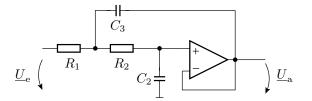
$$\underline{U}_{e} \underbrace{\begin{pmatrix} L & \underline{I} = 0 \\ C & \underline{I} & v = 1 \end{pmatrix}}_{V = 1} \underline{U}_{a}$$

$$\frac{1}{1 + j\omega RC - \omega^{2}LC} = \frac{1}{1 + a_{i} \cdot \frac{j\omega}{2\pi f_{0}} + b_{i} \cdot \left(\frac{j\omega}{2\pi f_{0}}\right)^{2}}$$


$$R = \frac{a_{i}}{2\pi f_{0} \cdot C}; L = \frac{b_{i}}{C \cdot (2\pi f_{0})^{2}}$$

Für $f_0 = 10 \, \text{kHz}$, $C = 100 \, \text{nF}$:

	a_i	b_i	C_i	R_i	L_i
Stufe 1	3,8437	8,5529	100 nF	611,7 Ω	21,66 mH
Stufe 2	0,6092	1,9124	100 nF	96,96 Ω	4,844 m H
Stufe 3	0,1296	1,0766	100 nF	20,63 Ω	2,727 mH


	a_i	b_i	C_i	R_i	L_i
Stufe 1	3,8437	8,5529	100 nF	611,7 Ω	21,66 mH
Stufe 2	0,6092	1,9124	100 nF	96,96 Ω	4,844 mH
Stufe 3	0,1296	1,0766	100 nF	20,63 Ω	2,727 mH

 Frequenzgang identisch mit Simulation der Laplace-Transformierten.

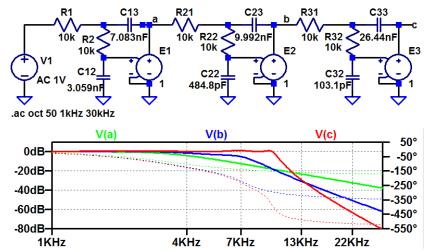
Filterschaltung mit drei Op-Amp

$$\frac{\underline{U}_{\mathbf{a}}}{\underline{U}_{\mathbf{e}}} = \frac{1}{1 + j\omega \cdot C_2 \cdot (R_1 + R_2) - \omega^2 \cdot R_1 \cdot R_2 \cdot C_2 \cdot C_3} = \frac{1}{1 + a_i \cdot s_n + b_i \cdot s_n^2}$$

$$C_2 \cdot (R_1 + R_2) = \frac{a_i}{2\pi f_0}; \ R_1 \cdot R_2 \cdot C_2 \cdot C_3 = \frac{b_i}{(2\pi f_0)^2}$$

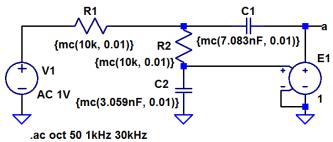
Vorgabe: $R_1=R_2=10\,\mathrm{k}\Omega$

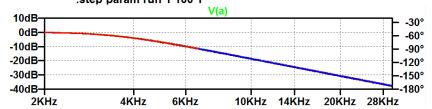
4. Filter


Berechnung der Parameter

```
a = [3.8437 \ 0.6092 \ 0.1296];
b = [8.5529 \ 1.9124 \ 1.0766];
R1=1E4; R2=1E4; f0=1E4;
for i=1:3
  C2(i) = a(i)/((R1+R2)*2*pi*f0);
  C3(i) = b(i)/(R1*R2*C2(i)*(2*pi*f0)^2);
```

end

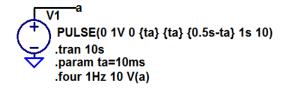

	a_i	b_i	$R_1 = R_2$	$C_{2.i}$	$C_{3.i}$
Stufe 1	3,8437	8,5529	10 k	3,059 n F	7,083 n F
Stufe 2	0,6092	1,9124	10 k	484,8 pF	9,992 n F
Stufe 3	0,1296	1,0766	10 k	103,1pF	26,44 n F



Simulation mit 1% Bauteiltoleranzen

.step param run 1 100 1

Spektralanalyse



Fouriertransformation

Aufgabe 3.12: Flankensteilheit und Spektrum

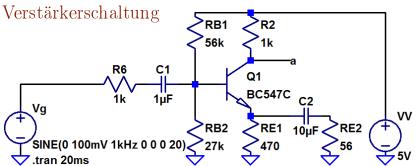
Die nachfolgende Spannungsquelle erzeugt symmetrische Pulse mit einer Periode von 1s und einer Amplitude von 1V. Die Anstiegs- und Abfallzeit sind gleich und werden durch den Parameter ta festgelegt.

- Bestimmen Sie die Amplituden der Spektralwerte für 1, 2, ..., 10 Hz für zwei verschiedene Werte für ta: 10 ms und 200 ms.
- Wie wirkt sich eine kurze Anstiegs- und Abstiegszeit auf die Amplituden der Spektralwerte der höheren Frequenzen aus?

Zur Kontrolle

1	Frequenz	Ampl. für $t_{\rm a}=10{ m ms}$	Ampl. für $t_{\rm a}=200{ m ms}$	
	1 Hz	637 mV	596 mV	
	2 Hz 0		0	
	3 Hz	212 mV	107 mV	
	4 Hz 0		0	
	5 Hz 127 mV		0	
	6 Hz	0	0	
	7 Hz 90 mV		20 mV	
	8 Hz 0		0	
	9 Hz	70 mV	7 mV	
	10 Hz	0	0	

Kurze Ein- und Ausschaltzeiten (steile Flanken) erhöhen die Amplituden der hochfrequenten Spektralanteile.



Klirrfaktor

Aufgabe 3.13: Zu untersuchende

- Untersuchen Sie mit einem 1kHz-Sinuseingabesignal als Eingabe, bis zu welcher Amplitude des Eingabesignals am Ausgang ein sinusförmiges Signal ausgegeben wird.
- 2 Bestimmen Sie für 20%, 50%, 80% und 120% der in Aufgabenteil a bestimmten Amplitude den Klirrfaktor.

Zur Kontrolle

- Max. Eingabeamplitude ohne erkennbare Verzerrung ca. 150 mV.
- Klirrfaktoren:

Amplitude:	30 mV	75 mV	120 mV	180 mV
Klirrfaktor:	0,7%	2,9%	5,6%	11,2%

Rauschen

Rauschquellen

Aufgabe 3.14: Wärmerauschen an Widerständen

Bestimmen Sie für einen Widerstand von $10\,\mathrm{k}\Omega$ und $T=300\,\mathrm{K}$

- die Rauschspannungsdichte,
- 2 die Rauschstromdichte,
- die Rauschleistungsdichte,

und im Frequenzbereich von 20 Hz bis 20 kHz

- 4 die effektive Rauschspannung,
- 5 den effektiven Rauschstrom und
- 6 die mittlere Rauschleistung.

Um welchen Faktor erhöht sich die effektive Rauschspannung

- bei Verdopplung der Obergrenze des Frequenzbereichs auf 40 kHz,
- **5** bei Halbierung der Untergrenze des Frequenzbereichs auf 10 Hz.

Zur Kontrolle

Rauschspannungsdichte:

$$u_{\text{r.R}}(f) = \sqrt{4 \cdot k_{\text{B}} \cdot T \cdot R} = \sqrt{4 \cdot 1,38 \cdot 10^{-23} \frac{\text{Ws}}{\text{K}} \cdot 300 \,\text{K} \cdot 10 \,\text{k}\Omega}$$

= $1,3 \cdot 10^{-8} \frac{\text{V}}{\sqrt{\text{Hz}}}$

Rauschstromdichte:

$$i_{r.R}(f) = \frac{u_{r.R}(f)}{R} = 1.3 \cdot 10^{-12} \frac{A}{\sqrt{Hz}}$$

Rauschleistungsdichte:

$$u_{\rm r.R}(f) \cdot i_{\rm r.R}(f) = 1,66 \cdot 10^{-20} \frac{\rm W}{\rm Hz}$$

Im Frequenzbereich von 20 Hz bis 20 kHz:

Effektive Rauschspannung:

$$u_{\text{reff.R}} = u_{\text{r.R}}(f) \cdot \sqrt{20 \,\text{kHz} - 20 \,\text{Hz}} = 1.8 \,\mu\text{V}$$

Effektiver Rauschstrom:

$$i_{\text{reff.R}} = \frac{U_{\text{Reff}}}{R} = 180 \,\text{pA}$$

6 Mittlere Rauschleistung:

$$u_{\text{reff.R}} \cdot i_{\text{reff.R}} = 3.3 \cdot 10^{-16} \,\text{W}$$

Um welchen Faktor erhöht sich die Rauschleistung

- bei Verdopplung der Obergrenze des Frequenzbereichs auf 40 kHz: doppelte Rauschleistung, $\sqrt{2}$ -fache Rauschspannung/-strom
- **8** bei Halbierung der Untergrenze des Frequenzbereichs auf 10 Hz: vernachlässigbare Erhöhung der Rauschspannung

Aufgabe 3.15: Stromrauschen an pn-Übergängen

Wie groß sind die Rauschstromdichte und der effektive Rauschstrom an einem pn-Übergang bei einem Durchlassstrom von 1 mA im Frequenzbereich von 1 Hz bis 100 kHz

- nur Strom- ohne 1/f-Rauschen,
- 2 zusätzliches 1/f-Rauschen mit den Parametern $A_{\rm F}=1{,}3$, $k_{\rm F}=10^{-14}{\rm A}^{0,7}{\rm Hz}$.
- 3 Auf welchen Wert erhöht sich der gesamte Rauschstrom bei Verdopplung der Obergrenze?
- Auf welchen Wert erhöht sich der gesamte Rauschstrom bei Halbierung der Untergrenze des Frequenzbereichs?

Zur Kontrolle

■ Stromrauschen ohne 1/f-Rauschen:

$$i_{\text{r.sid}}(f) = \sqrt{2 \cdot q \cdot I} = \sqrt{2 \cdot 1,6 \cdot 10^{-19} \text{As} \cdot 1 \text{ mA}} = 17,9 \frac{\text{pA}}{\sqrt{\text{Hz}}}$$
 $r_{\text{reff.sid}} = i_{\text{r.sid}}(f) \cdot \sqrt{100 \, \text{kHz} - 1 \, \text{Hz}} = 5,66 \, \text{nA}$
1/f Paucahan mit $A = 1.2 \, h_{\text{r.sid}} = 10^{-14} \, \text{A} \, 9.7$

2 1/f-Rauschen mit $A_{\rm F}=1{,}3,~k_{\rm F}=10^{-14}{\rm A}^{0{,}7}$:

$$\begin{split} i_{\text{r.fid}}\left(f\right) &= \sqrt{\frac{k_{\text{F}} \cdot I^{A_{\text{F}}}}{f}} = \sqrt{\frac{10^{-14} \cdot 0,001^{1,3} \cdot \text{A}^2}{f}} = \frac{1,12\,\text{nA}}{\sqrt{\text{Hz}}} \\ i_{\text{reff.fid}} &= \sqrt{\int_{f_{\text{u}}}^{f_{\text{o}}} \frac{k_{\text{F}} \cdot I^{A_{\text{F}}}}{f} \cdot df} = \sqrt{k_{\text{F}} \cdot I_{\text{D}}^{A_{\text{F}}} \cdot \ln\left(\frac{f_{\text{o}}}{f_{\text{u}}}\right)} \\ &= \sqrt{10^{-9} \cdot 0,1^{1,3} \cdot \text{A}^2 \cdot \ln\left(10^6\right)} = 3,81\,\text{nA} \end{split}$$

Rauschstrom bei Verdopplung der Obergrenze:

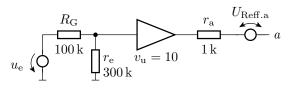
$$i_{\text{reff.2fo}} = 180 \frac{\text{pA}}{\sqrt{\text{Hz}}} \cdot \sqrt{200 \,\text{kHz} - 1 \,\text{Hz}}$$

 $+ \sqrt{10^{-9} \cdot 0.1^{1.3} \cdot \text{A}^2 \cdot \ln\left(\frac{2 \cdot 10^5}{1}\right)}$
 $= 8.00 \,\text{nA} + 3.92 \mu\text{A}$

Rauschstrom bei Halbierung der Untergrenze:

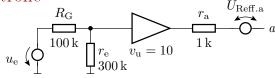
$$i_{\text{reff.fu/2}} = 180 \frac{\text{pA}}{\sqrt{\text{Hz}}} \cdot \sqrt{100 \,\text{kHz} - 0.5 \,\text{Hz}}$$

 $+ \sqrt{10^{-9} \cdot 0.1^{1.3} \cdot \text{A}^2 \cdot \ln\left(\frac{10^5}{0.5}\right)}$
 $= 5.66 \,\text{nA} + 3.92 \,\mu\text{A}$


Rauschquellentransformation

4. Rauschen

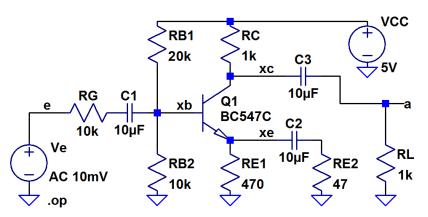
Aufgabe 3.16: Rauschquellentransformation


In der nachfolgenden Schaltung ist der Verstärker durch seinen Eingangswiderstand, eine spannungsgesteuerte Quelle mit Verstärkung 10 und seinen Ausgangswiderstand dargestellt:

- $lue{1}$ Wie groß ist das Wärmerauschen des Generatorwiderstands R_{arphi} bei 300 K im Frequenzbereich 100 Hz bis 1 MHz?
- 2 Wie groß ist das äquivalente durch den Generatorwiderstand verursache Rauschen am Schaltungsausgang $U_{\text{Reff.a.Rg}}$?

Zur Kontrolle

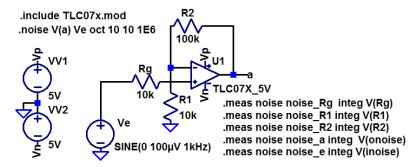
 \blacksquare Wärmerauschen des Generatorwiderstands $R_{\rm g}$ bei 300 K im Frequenzbereich 100 Hz bis 1 MHz?


$$\begin{array}{lcl} u_{\rm reff.Rg} & = & \sqrt{4 \cdot k_{\rm B} \cdot T \cdot R \cdot (f_{\rm o} - f_{\rm u})} \\ \\ & = & \sqrt{4 \cdot 1,38 \cdot 10^{-23} \frac{\rm Ws}{\rm K} \cdot 300 \, \rm K \cdot 100 \, k\Omega \cdot (1 \, MHz - 100 \, Hz)} \\ \\ & = & 40.7 \, \mu \rm V \end{array}$$

2 Äquivalentes Rauschen am Ausgang:

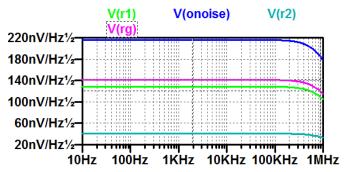
$$u_{\text{reff.a.Rg}} = u_{\text{reff.Rg}} \cdot \frac{r_{\text{e}}}{R_{\text{G}} + r_{\text{e}}} \cdot v_{\text{u}} = 305 \,\mu\text{V}$$

Aufgabe 3.17: Rausch-Analyse Transistorverstärker


■ Wie groß ist die effektive Rauschspannung am Ausgang im Frequenzbereich von 20 Hz bis 20 kHz?

1.

- 2 Welche Ausgangsrauschspannungsanteile verursachen die Widerstände $R_{\rm g},~R_{\rm B1},~R_{\rm B2}$ und der Transistor?
- 3 Was für eine Rauschzahl hat der Verstärker?
- Wie groß muss der Effektivwert der Eingangsspannung mindestens sein, damit der Signalrauschabstand >10 beträgt?


Aufgabe 3.18: Rauschen eines OpAmp-Verstärkers

Bestimmen Sie die Rauschdichten und die effektiven Rauschspannungen im Frequenzbereich von 10 Hz bis 1 MHz für

- das Ausgangsrauschen ingesamt und deren Anteile für die drei Widerstände.
- 2 den Anteil für den Operationsverstärker.

Zur Kontrolle

noise_rg: INTEG(v(rg))=0.000131781 FROM 10 TO 1e+006 noise_r1: INTEG(v(r1))=0.00012001 FROM 10 TO 1e+006 noise_r2: INTEG(v(r2))=3.79503e-005 FROM 10 TO 1e+006 noise_a: INTEG(v(noise))=0.000202219 FROM 10 TO 1e+006 noise e: INTEG(v(inoise))=1.97657e-005 FROM 10 TO 1e+006

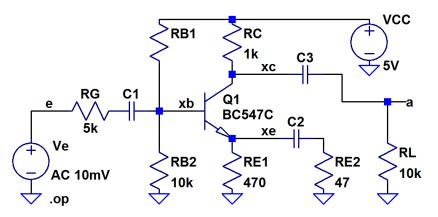
Anteil des Ausgangsrauschen durch den Operationsverstärker:

$$u_{\text{reff.a.OV}} = \sqrt{u_{\text{reff.a.Rg}}^2 - u_{\text{reff.a.Rg}}^2 - u_{\text{reff.a.R1}}^2 - u_{\text{reff.a.R2}}^2}$$

$$= \sqrt{(202 \,\mu\text{V})^2 - (131 \,\mu\text{V})^2 - (120 \,\mu\text{V})^2 - (38 \,\mu\text{V})^2} = 88 \,\mu\text{V}$$

Fortsetzung der Aufgabenstellung:

- Wie groß ist das äquivalente Eingangsrauschen?
- Wie groß ist den Signal-Rausch-Abstand zu einem Sinus-Eingabesignal mit einer Amplitude von 100 μV.

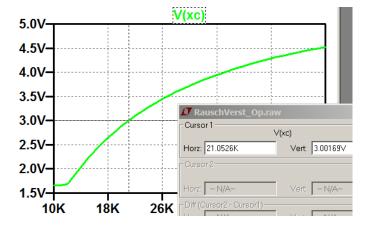

Zur Kontrolle:

- 3 Äquivalente Eingangsrauschen: 19,8 μV
- Signal-Rausch-Abstand:

$$SNR = \frac{1}{2} \cdot \left(\frac{100 \,\mu\text{V}}{19.8 \,\mu\text{V}}\right)^2 = 12,75$$

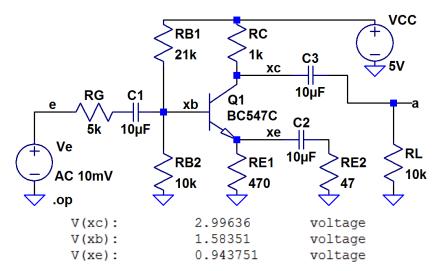
Verstärkerschaltung

Zu untersuchen: Arbeitspunkt, Kleinsignalersatzschaltung, Aussteuerungsbereich, Klirrfaktor, Rauschen


Aufgabe 3.19: Arbeitspunkteinstellung über $R_{\rm B1}$

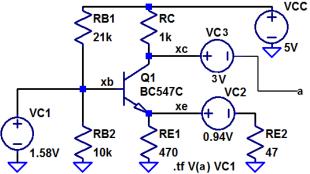
 \blacksquare Bestimmen Sie für $R_{\rm B1}$ einen Wert, bei dem das Potenzial am Kollektor etwa 3 V beträgt.

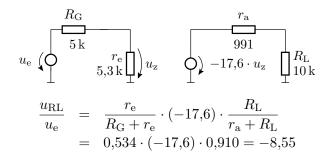
Zur Kontrolle


Aufgabe 3.20: Verstärkerkleinsignalparameter

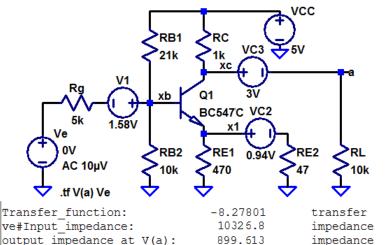
- Bestimmen Sie Eingangswiderstand, Verstärkung und Ausgangswiderstand der Verstärkerschaltung (ohne Generatorund Lastwiderstand).
- Berechnen Sie die Gesamtverstärkung (den Faktor, um den der AC-Anteil an RL größer ist als der von Ve)?

Die Simulationsart »tf« ist eine stationäre Analyse. Kapazitäten sind Unterbrechungen und Induktivitäten Verbindungen. Für Aufgabenteil a sind C_1 bis C_3 durch Quellen zur Modellierung der Gleichspannungsabfälle zu ersetzen. $R_{\rm g}$ und $R_{\rm L}$ sind wegzulassen.


Bestimmung der Spannungsabfälle über C_1 bis C_3


Ersatzschaltung für die tf-Simulation

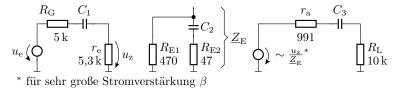
Tf-Simulation mit Ersatz von C_1 bis C_3 durch Quellen und ohne $R_{\rm g}$ und $R_{\rm L}$:


Transfer_function: -17.593 transfer vc1#Input_impedance: 5327.45 impedance output impedance at V(xc): 991.296 impedance

Gesamtverstärkung unter Einbeziehung der Spannungsteiler am Ein- und Ausgang

Kontrolle durch Tf-Simulation mit $R_{ m g}$ und $R_{ m L}$:

G. Kemnitz · Institut für Informatik, TU Clausthal (E2-GF3)


Aufgabe 3.21: RC-Tiefpässe

Extrahieren Sie alle RC-Tiefpässe und schätzen Sie mit dem Überschlag

$$C_i \gg \frac{1}{2\pi \cdot 100 \,\mathrm{Hz} \cdot R_i}$$

ab, welche Größenordnung die Kapazitäten C_1 bis C_3 mindestens haben müssen, damit die untere Grenzfrequenz nicht wesentlich mehr als 100 Hz beträgt. (Kontrolle und Nachbesserung später mit einer AC-Simulation und Probieren.)

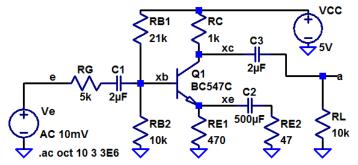
Zur Kontrolle

Ersatzwiderstand bei Betrachtung als RC-Tiefpass:

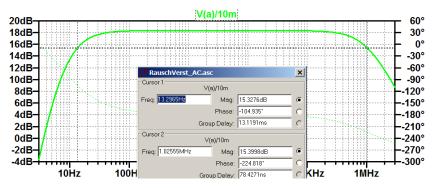
$$R_1=10{,}3\,\mathrm{k}\Omega$$
 $R_2\approx R_{\mathrm{E}2}=47\,\Omega$ $R_3=11{,}0\,\mathrm{k}\Omega$

Wahl der Kapazitäten:
$$C_1=C_3=2\,\mu\mathrm{F}$$
, $C_2=500\,\mu\mathrm{F}$

Woher kommt die Abschätzung $R_2 \approx R_{\rm E2}$?

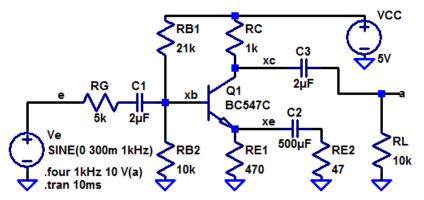

$$\frac{1}{Z_{\rm E}} = \frac{1}{R_{\rm E1}} + \frac{1}{\frac{1}{i_{\rm EC}} + R_{\rm E2}} = \frac{1 + j\omega C (R_{\rm E1} + R_{\rm E2})}{R_{\rm E1} \cdot (1 + j\omega C \cdot R_{\rm E2})^{(*)}}$$

(*) entscheidender Term für die untere Grenzfrequenz.


Aufgabe 3.22: Untersuchung des Frequenzgangs

- Bestimmen Sie mit den auf der Folie zuvor abgeschätzten Kapazitätswerten den Frequenzgang im Bereich von 3 Hz bis 3 MHz.
- 2 Lesen Sie die untere und obere Grenzfrequenz ab.

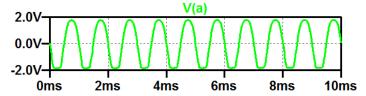
Zur Kontrolle



Untere Grenzfrequenz: $\approx 13\,\mathrm{Hz}$, Obere Grenzfrequenz: $\approx 1\,\mathrm{MHz}$

Aufgabe 3.23: Klirrfaktor

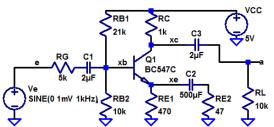
- Bestimmen Sie den Klirrfaktor für die Eingangsamplituden 100 mV, 200 mV und 300 mV.
- Wird die obere oder die untere Halbwelle mehr verzerrt?



Zur Kontrolle

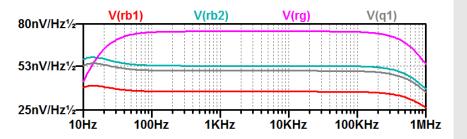
Klirrfaktoren:

Eingabeamplitude	100 mV	200 mV	300 mV
Klirrfaktor	2,38%	5,83%	11,3%


2 Die untere Halbwelle wird mehr verzerrt:

Aufgabe 3.24: Rauschen

- Bestimmen Sie das äquivalente Ausgangsrauschen insgesamt und einzeln für den Generatorwiderstand, die Widerstände des Basisspannungsteilers und den Transistor sowie das äquivalente Eingangsrauschen.
- Bestimmen Sie den Signal-Rausch-Abstand für ein Sinussignal mit einem Effektivwert von 1 mV am Eingang.
- Bestimmen Sie die Rauschzahl des Verstärkers.



.meas noise noise_Rg integ V(Rg)
.meas noise noise_Rb1 integ V(Rb1)
.meas noise noise_Rb2 integ V(Rb2)
.meas noise noise_p1 integ V(q1)
.meas noise noise_a integ V(onoise)
.meas noise noise_e integ V(inoise)
.noise V(a) Ve oct 10 10 1E6

Zur Kontrolle

```
noise_rg: INTEG(v(rg))=6.7135e-005 FROM 10 TO 1e+006 noise_rb1: INTEG(v(rb1))=3.27589e-005 FROM 10 TO 1e+006 noise_rb2: INTEG(v(rb2))=4.74722e-005 FROM 10 TO 1e+006 noise_p1: INTEG(v(q1))=4.4733e-005 FROM 10 TO 1e+006 noise_a: INTEG(v(onoise))=9.98175e-005 FROM 10 TO 1e+006 noise_e: INTEG(v(inoise))=1.3537e-005 FROM 10 TO 1e+006
```


Signal-Rausch-Abstand für ein 1 mV Sinussignal am Eingang:

$$SNR = \left(\frac{1 \,\mathrm{mV}}{\sqrt{2} \cdot 13 \,\mu\mathrm{V}}\right)^2 \approx 2960$$

3 Rauschzahl des Verstärkers:

$$F = (99.8 \,\mu\text{V} / 67 \,\mu\text{V})^2 = 2.18$$